
[1]

Mastering OpenLayers 3

Create powerful applications with the most robust open
source web mapping library using this advanced guide

Gábor Farkas

BIRMINGHAM - MUMBAI

Mastering OpenLayers 3

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1220116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-100-6

www.packtpub.com

www.packtpub.com

Credits

Author
Gábor Farkas

Reviewer
Jose Troche

Commissioning Editor
Veena Pagare

Acquisition Editor
Sonali Vernekar

Content Development Editor
Anish Dhurat

Technical Editor
Jayesh Sonawane

Copy Editors
Sonia Cheema

Trishya Hajare

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Gábor Farkas is a PhD student at University of Pécs's Institute of Geography.
He holds a master's degree in geography, although he moved from traditional
geography to pure Geoinformatics early in his academic journey. He often studies
Geoinformatical solutions in his free time, keeps up with the latest trends, and is an
open source enthusiast. He loves to work with GRASS GIS, PostGIS, and QGIS, but
his all-time favorites are open source web mapping technologies, which mostly cover
his main areas of research interest.

There have been many kind-hearted and nice people in my life
who have helped me in my career or private life by giving me great
advice. However, there is one significant person who has made this
book possible. I would like to dedicate this book to my advisor,
Titusz Bugya, who gave me the tip of starting a blog about WebGIS
in English. This blog eventually led to the writing of this book. So,
thanks Titusz; this book is partially the result of your trust and effort.

About the Reviewer

Jose Troche is a seasoned software development engineer with over a decade of
hands-on experience in architecting and building enterprise web applications in
multitiered environments. He has developed web-based applications that are capable
of creating, storing, searching, retrieving, real-time sharing, and tracking geospatial
data. He has also created REST APIs for advanced geospatial web services that are
deployed to large-scale enterprise cloud architectures. He has integrated OpenLayers
into several of his projects.

Jose has also worked as a contractor in aerospace and defense companies and
agencies such as NASA, Lockheed Martin and General Dynamics; he is currently
employed by Amazon Inc.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Creating Simple Maps with OpenLayers 3 1

Before getting started 2
Creating a working environment 2

Structure of OpenLayers 3 3
Building the layout 4

Creating the appeal 5
Writing the code 6

Using the API documentation 9
Understanding type definitions 10

Debugging the code 11
Summary 12

Chapter 2: Applying Custom Styles 13
Before getting started 13

Basic considerations 14
Customizing the default appearance 14

Identifying the classes 15
Styling the controls 15
Customizing the attribution control 18
Creating a custom zoom control with CSS 19

Styling vector layers 22
Customizing the appearance with JavaScript 24

Changing the overview map and the scale bar 24
Truncating the coordinate control 25
Changing the attribution 26

Table of Contents

[ii]

Creating a WebGIS client layout 28
Building the HTML 28
Styling the layout 29
Writing the code 32

Summary 34
Chapter 3: Working with Layers 35

Before getting started 35
Using a proxy 36
Resources to use 36
Basic considerations 37

Building a layer tree 37
Styling the layer tree 38
Creating a layer tree constructor 39

Adding layers dynamically 43
Creating the interface 43
Extending the constructor 45
Fetching the WMS metadata 49
Adding WMS layers 53
Adding WFS layers 54
WFS considerations 55

Adding vector layers with the File API 56
Creating the interface 56
Building the method 57

Adding vector layers with a library 59
Removing layers dynamically 61

Extending a constructor 61
Changing layer attributes 64

Styling active layers 64
Extending the method 65

Changing the layer order with the Drag and Drop API 68
Clearing the message bar 72
Summary 73

Chapter 4: Using Vector Data 75
Before getting started 76
Accessing attributes 76

Writing the code 77
Setting attributes 80

Styling the form 80
Writing the code 81

Table of Contents

[iii]

Validating attributes 84
Adjusting the styles 85
Building headers 85
Writing the code 86

Creating thematic layers 89
Extending the layer tree 89
Creating choropleth maps 91
Creating categorized maps 94

Saving vector data 96
Saving in arbitrary formats 96

Saving with WFS-T 97
Modifying the geometry 98
Summary 99

Chapter 5: Creating Responsive Applications with
Interactions and Controls 101

Before getting started 101
Basic considerations 102

Building the toolbar 102
Mapping interactions to controls 104

Creating the control 105
Adding and removing the control 107
Adding a selection control 108

Building a set of feature selection controls 109
Styling the controls 109
Creating the selection tools 110

Adding new vector layers 112
Creating the HTML and the CSS 113
Extending the layer tree 114

Building a set of drawing tools 116
Writing the method 116

Modifying and snapping to features 121
Extending the method 122

Creating new interactions 124
Understanding ol.interaction.Pointer 125
Removing features 125
Dragging features 127
Extending the method 128

Building a measuring control 130
Creating the interaction 130

Table of Contents

[iv]

Doing geodesic measurements 136
Calculating lengths even more precisely 138

Summary 139
Chapter 6: Controlling the Map – View and Projection 141

Before getting started 141
Basic considerations 142

Customizing a view 143
Constraining a view 145
Creating a navigation history 146
Working with extents 151

Creating a zoom control 151
Extending the toolbar 152

Rotating a view 154
Changing the map's projection 157
Creating custom animations 162

Building the control 163
Creating animations 164

Summary 169
Chapter 7: Mastering Renderers 171

Before getting started 171
Using different renderers 172
Creating a WebGL map 172
Drawing lines and polygons with WebGL 174
Blending layers 176
Clipping layers 178
Exporting a map 179
Creating a raster calculator 182

Raster 101 183
Operating with pixels 184

Creating a convolution matrix 186
How convolution works 187
Converting an image to 8-bit 187
Implementing the Sobel filter 189
Normalizing an image 190
Finalizing a control 191

Clipping a layer with WebGL 194
Writing programs 195
Creating a clipping mask 197

Summary 201

Table of Contents

[v]

Chapter 8: OpenLayers 3 for Mobile 203
Before getting started 204

Basic considerations 204
Responsive styling with CSS 204

Writing the style sheet 205
Constructing the map 207

Generating geocaches 209
Adding device-dependent controls 211

Adding controls for touch devices 213
Adding controls for desktop computers 214

Vectorizing the mobile version 216
Making the mobile application interactive 220
Summary 223

Chapter 9: Tools of the Trade – Integrating Third-Party
Applications 225

Before getting started 225
Exporting a QGIS project 226

Installing the qgis2web plugin 227
Inspecting the project 228
Exporting a map 229
Salvaging the results 230

Importing shapefiles 232
Editing the HTML file 232
Replacing a function 234

Spatial analysis with Turf 236
Preparing an example 236
Implementing a buffer operation 238
Implementing a merge operation 240
Implementing the self-intersect operation 242

Spatial analysis with JSTS 244
Implementing operations 245

3D rendering with Cesium 248
Preparing a map 248
Creating a control 250
Observing a terrain 253
Extending the Cesium scene 255

Summary 257

Table of Contents

[vi]

Chapter 10: Compiling Custom Builds with Closure 259
Before getting started 259
Configuring Node JS 260

Installing Node JS on Windows 260
Installing Node JS on Linux 261
Resolving dependencies 261

Compiling OpenLayers 3 262
Building default versions 263
Understanding a configuration file 263
Building OpenLayers 3 with a subset of features 264

Bundling an application with OpenLayers 3 266
Editing the application 266
Creating a configuration file 267
Fixing the application 270

Extending OpenLayers 3 272
Creating rich documentation with JSDoc 274

Customizing the documentation 275
Summary 279

Index 281

[vii]

Preface
As in every other computer-related field, the Web has also become a determining
factor in GIS. In this new trend, with some client-based knowledge, we can easily
publish our maps and layers on the Web. However, as technology rapidly develops,
we can now perform some more serious GIS-related work on the Web as well.
With enough browser capabilities and client-side computational power, an even
newer trend has emerged from the Web-based GIS world: WebGIS. This new trend
researches the possibilities of deploying powerful GIS applications on the Web,
making the most general workflows of a spatial analyst possible on a browser in a
platform-independent manner.

Thanks to OSGEO, OGC, and other initiatives, companies, individuals, and the
open source philosophy have made a quick and great impact on this brand new
field. Consequently, there is a wide palette of open source applications and libraries
to work with and build upon. One of the most original and robust web mapping
projects is OpenLayers. This library debuted a brand new, cutting-edge technology
with a major version change. OpenLayers 3 is capable of things that we could not
even imagine a few years ago.

An unplanned consequence (we could probably call it externality) of its powerful
capabilities is the added difficulty of using it and a steep learning curve. The
twisted version of a famous quote also states: with great power comes great complexity.
Creating simple maps and deploying simple web mapping applications is easy with
OpenLayers 3; however, if we need something more advanced, we need more stable
and in-depth knowledge of the library. Gaining this knowledge is a great journey,
which Mastering OpenLayers 3 is designed to start you on and aid you through.

Preface

[viii]

What this book covers
Chapter 1, Creating Simple Maps with OpenLayers 3, guides you through the process
of creating a simple map with the library. It also discusses some key concepts of
OpenLayers 3, an effective way of using the API documentation, and a method to
debug broken code.

Chapter 2, Applying Custom Styles, shows you how you can use CSS and JavaScript to
customize the appearance of your application. It discusses which parts of the library
can be styled with CSS and those that can be styled with JavaScript. It provides some
methods for you to use to create a custom style.

Chapter 3, Working with Layers, introduces you to layer management. In this chapter,
you will learn how to modify the layer stack, what the most common and useful
operations you can perform with layers, and essentially, how to build a complete
layer tree.

Chapter 4, Using Vector Data, shows you various vector formats and operations. You
will learn a lot about geospatial features. You will read, write, modify, and style
vector layers, attributes, and geometries.

Chapter 5, Creating Responsive Applications with Interactions and Controls, guides
you through the various controls in OpenLayers 3. You will learn how to use the
available controls effectively and build your very own.

Chapter 6, Controlling the Map – View and Projection, discusses some essential views
and projection-based concepts. You will learn how to modify the view, use extents
dynamically, and use custom projections.

Chapter 7, Mastering the Renderers, is a bit of a specialized chapter. You will take
a look at how rendering works in OpenLayers 3 and how you can modify these
rendering mechanisms. There will be some examples using Canvas and the WebGL
HTML technologies, ranging from novice to expert skill levels.

Chapter 8, OpenLayers 3 for Mobile, shows you how to create responsive applications
for desktop and mobile browsers at the same time. You will be able to make some
mobile-based considerations and create a mobile-friendly OpenLayers 3 application
by the end of this chapter.

Chapter 9, Tools of the Trade – Integrating Third-Party Applications, introduces some
other tools into your workflow, making the development of your application more
efficient and enjoyable. You will get some tips about some very useful third-party
applications and libraries, which can be easily integrated with OpenLayers 3.

Preface

[ix]

Chapter 10, Compiling Custom Builds with Closure, shows you how to build your own
version of OpenLayers 3. Along with the custom building process, you will learn
how to bundle your own application with the library and generate a custom API
documentation automatically.

What you need for this book
For this book, you will generally need a modern web browser on your system. For
some of the chapters, you will also need some additional software. For a better
experience, it is strongly advised to have a working server on your machine. It can be
either an Apache, an Nginx, or a HTTP Server created from Python.

For Chapter 8, OpenLayers 3 for Mobile, you will either need a handheld touch device
to test some touch based features, or a browser, which can emulate such a device.
For emulation, any of Google Chrome, Mozilla Firefox, or Opera are good enough.
Unfortunately, Microsoft browsers are not suitable for this purpose. For Chapter 9, Tools
of the Trade – Integrating Third Party Applications, you will need a fresh version of QGIS.

Who this book is for
This book is intended for frontend developers with a basic understanding of
JavaScript and GIS concepts, and preferably for those who are familiar with the
fundamentals of OpenLayers 3. You might have never used OpenLayers 3 as a
seasoned JavaScript developer. If this is the case, and you are ambitious and eager to
learn web mapping, this book will definitely set you on the right track.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "To make our map's
div element focusable, we must add a tabindex property to it in the HTML file."
Key combinations are also distinguished from regular text: "F12 in modern ones, or
CTRL + J, if F12 does not work".

Preface

[x]

A block of code is set as follows:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Chapter 1 - Creating a simple map</title>
<link href="../../js/ol3-3.11.0/ol.css" rel="stylesheet">
<link href="ch01.css" rel="stylesheet">

Any command-line input or output is written as follows:

node tasks/build.js config/ol.json ol.js

node tasks/build.js config/ol-debug.json ol-debug.js

Words that you see on the screen, for example, in menus or dialog boxes, appear in
the text like this: "From the available shortcuts, we will need the command prompt
(Node.js command prompt) as we will need to start various JavaScript programs."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xi]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/MasteringOpenlayers3_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/MasteringOpenlayers3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringOpenlayers3_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Creating Simple Maps with
OpenLayers 3

OpenLayers 3 is the most robust open source web mapping library out there, highly
capable of handling the client side of a WebGIS environment. Whether you know
how to use OpenLayers 3 or you are new to it, this chapter will help you to create a
simple map and either refresh some concepts or get introduced to them. As this is
a mastering book, we will mainly discuss the library's structure and capabilities in
depth. In this chapter we will create a simple map with the library, and revise the
basic terms related to it.

In this chapter we will cover the following topics:

• Structure of OpenLayers 3
• Architectural considerations
• Creating a simple map
• Using the API documentation effectively
• Debugging the code

Creating Simple Maps with OpenLayers 3

[2]

Before getting started
Take a look at the code provided with the book. You should see a js folder in which
the required libraries are stored. For the first few chapters, ol.js, and ol.css in the
ol3-3.11.0 folder will be sufficient. The code is also available on GitHub. You can
download a copy from the following URL: https://github.com/GaborFarkas/
mastering_openlayers3/releases. Take a look at the following screenshot:

You can download the latest release of OpenLayers 3 from its GitHub
repository at https://github.com/openlayers/ol3/releases.
For now, grabbing the distribution version (v3.11.0-dist.zip)
should be enough.

Creating a working environment
There is a security restriction in front end development, called Cross Origin Resource
Sharing (CORS). By default, this restriction prevents the application from grabbing
content from a different domain. On top of that, some browsers disallow reaching
content from the hard drive when a web page is opened from the file system. To
prevent this behavior, please make sure you possess one of the following:

• A running web server (highly recommended)
• Firefox web browser with security.fileuri.strict_origin_policy set

to false (you can reach flags in Firefox by opening about:config from the
address bar)

https://github.com/GaborFarkas/mastering_openlayers3/releases
https://github.com/GaborFarkas/mastering_openlayers3/releases
https://github.com/openlayers/ol3/releases

Chapter 1

[3]

• Google Chrome web browser started with the --disable-web-security
parameter (make sure you have closed every other instance of Chrome before
disabling security)

• Safari web browser with Disable Local File Restrictions (in the Develop
menu, which can be enabled in the Advanced tab of Preferences)

You can easily create a web server if you have Python 2 with
SimpleHTTPServer, or if you have Python 3 with http.server. For
basic tutorials, you can consult the appropriate Python documentation
pages.

Structure of OpenLayers 3
OpenLayers 3 is a well structured, modular, and complex library, where flexibility
and consistency take higher priority than performance. However, this does not
mean OpenLayers 3 is slow. On the contrary, the library highly outperforms its
predecessor; therefore its comfortable and logical design does not really adversely
affect its performance. The relationship of some of the most essential parts of the
library can be described with a radial Universal Modeling Language (UML) diagram,
such as the following:

Creating Simple Maps with OpenLayers 3

[4]

Reading a UML scheme can seem difficult, and can be difficult if it is a
proper one. However, this simplified scheme is quite easy to understand.
With regard to the arrows, 1 represents a one-to-one relation, while the
0..n and 1 symbols denote a one-to-many relationship.

You will probably never get into direct contact with the two superclasses at the top
of the OpenLayers 3 hierarchy: ol.Observable, and ol.Object. However, most of
the classes you actively use are children of these classes. You can always count on
their methods when you design a web mapping or WebGIS application.

In the diagram, we can see that the parent of the most essential objects is the
ol.Observable class. This superclass ensures all of its children have consistent
listener methods. For example, every descendant of this superclass bears the on,
once, and un functions, making registering event listeners to them as easy as
possible.

The next superclass, ol.Object, extends its parent with methods capable of easy
property management. Every inner property managed by its methods (get, set,
and unset) are observable. There are also convenience methods for bulk setting and
getting properties, called getProperties and setProperties. Most of the other
frequently used classes are direct, or indirect, descendants of this superclass.

Building the layout
Now that we have covered some of the most essential structural aspects of the
library, let's consider the architecture of an application deployed in a production
environment. Take another look at the code. There is a chapters folder in which
you can access the examples within the appropriate subfolder. If you open ch01, you
can see three file types in it. As you have noticed, the different parts of the web page
(HTML, CSS, and JavaScript) are separated. There is one main reason behind this: the
code remains as clean as possible.

With a clean and rational design, you will always know where to look when you
would like to make a modification. Moreover, if you're working for a company there
is a good chance someone else will also work with your code. This kind of design
will make sure your colleague can easily handle your code. On top of that, if you
have to develop a wrapper API around OpenLayers 3, this is the only way your code
can be integrated into future projects.

Chapter 1

[5]

Creating the appeal
As the different parts of the application are separated, we will create a minimalistic
HTML document. It will expand with time as the application becomes more
complicated and needs more container elements. For now, let's write a simple HTML
document:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Chapter 1 - Creating a simple map</title>
 <link href="../../js/ol3-3.11.0/ol.css" rel="stylesheet">
 <link href="ch01.css" rel="stylesheet">
 <script type="text/javascript" src="../../js/ol3-
3.11.0/ol.js"></script>
 <script type="text/javascript"
src="ch01_simple_map.js"></script>
 </head>
 <body>
 <div id="map" class="map"></div>
 </body>
</html>

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

In this simple document, we defined the connection points between the external
resources, and our web page. In the body, we created a simple div element with
the required properties. We don't really need anything else; the magic will happen
entirely in our code. Now we can go on with our CSS file and define one simple
class, called map:

.map {
 width: 100%;
 height: 100%;
}

Save this simple rule to a file named ch01.css, in the same folder you just saved the
HTML file.

If you are using a different file layout, don't forget to change the
relative paths in the link, and script tags appropriately.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Creating Simple Maps with OpenLayers 3

[6]

Writing the code
Now that we have a nice container for our map, let's concentrate on the code. In this
book, most of the action will take place in the code; therefore this will be the most
important part. First, we write the main function for our code:

function init() {
 document.removeEventListener('DOMContentLoaded', init);
}
document.addEventListener('DOMContentLoaded', init);

By using an event listener, we can make sure the code only runs when the structure
of the web page has been initialized. This design enables us to use relative values
for sizing, which is important for making adaptable applications. Also, we make
sure the map variable is wrapped into a function (therefore we do not expose it) and
seal a potential security breach. In the init function, we detach the event listener
from the document, because it will not be needed once the DOM structure has been
created.

The DOMContentLoaded event waits for the DOM structure to build
up. It does not wait for images, frames, and dynamically added content;
therefore the application will load faster. Only IE 8 and prior versions
do not support this event type, but if you have to fall back you can
always use the window object's load event. To check a feature's support
in major browsers, you can consult the following site: http://www.
caniuse.com/.

Next, we extend the init function by creating a vector layer and assigning it to a
variable. Note that in OpenLayers 3.5.0, creating vector layers has been simplified.
Now, a vector layer has only a single source class, and the parser can be defined as a
format in the source:

var vectorLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_capitals.geojson',
 attributions: [
 new ol.Attribution({
 html: 'World Capitals © Natural Earth'
 })
]
 })
});

http://www.caniuse.com/
http://www.caniuse.com/

Chapter 1

[7]

We are using a GeoJSON data source with a WGS84 projection. As the map will use a
Web Mercator projection, we provide a defaultDataProjection value to the parser,
so the data will be transformed automagically into the view's projection. We also
give attribution to the creators of the vector dataset.

You can only give attribution with an array of ol.Attribution
instances passed to the layer's source. Remember: giving attribution is
not a matter of choice. Always give proper attribution to every piece of
data used. This is the only way to avoid copyright infringement.

Finally, construct the map object, with some extra controls and one extra interaction:

var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 vectorLayer
],
 controls: [
 //Define the default controls
 new ol.control.Zoom(),
 new ol.control.Rotate(),
 new ol.control.Attribution(),
 //Define some new controls
 new ol.control.ZoomSlider(),
 new ol.control.MousePosition(),
 new ol.control.ScaleLine(),
 new ol.control.OverviewMap()
],
 interactions: ol.interaction.defaults().extend([
 new ol.interaction.Select({
 layers: [vectorLayer]
 })
]),
 view: new ol.View({
 center: [0, 0],
 zoom: 2
 })
});

Creating Simple Maps with OpenLayers 3

[8]

In this example, we provide two layers: a simple OpenStreetMap tile layer and the
custom vector layer saved into a separate variable. For the controls, we define the
default ones, then provide a zoom slider, a scale bar, a mouse position notifier, and
an overview map. There are too many default interactions, therefore we extend the
default set of interactions with ol.interaction.Select. This is the point where
saving the vector layer into a variable becomes necessary. The view object is a simple
view that defaults to projection EPSG:3857 (Web Mercator).

OpenLayers 3 also has a default set of controls that can be accessed
similarly to the interactions, under ol.control.defaults(). Default
controls and interactions are instances of ol.Collection, therefore
both of them can be extended and modified like any other collection
object. Note that the extend method requires an array of features.

Save the code to a file named ch01_simple_map.js in the same folder as your
HTML file. If you open the HTML file, you should see the following map:

You have different, or no results? Do not worry, not even a bit! Open up
your browser's developer console (F12 in modern ones, or CTRL + J if F12
does not work), and resolve the error(s) noted there. If there is no result,
double-check the HTML and CSS files; if you have a different result,
check the code or the CORS requirements based on the error message. If
you use Internet Explorer, make sure you have version 9 or higher.

Chapter 1

[9]

Using the API documentation
The API documentation for OpenLayers 3.11.0, the version we are using, can be
found at http://www.openlayers.org/en/v3.11.0/apidoc/. The API docs, like
the library itself, are versioned, thus you can browse the appropriate documentation
for your OpenLayers 3 version by changing v3.11.0 in the URL to the version you are
currently using.

The development version of the API is also documented; you can always
reach it at http://www.openlayers.org/en/master/apidoc/. Be
careful when you use it, though. It contains all of the newly implemented
methods, which probably won't work with the latest stable version.

Check the API documentation by typing one of the preceding links in your browser.
You should see the home page with the most frequently used classes. There is also a
handy search box, with all of the classes listed on the left side. We have talked about
default interactions and their lengthy nature before. On the home page you can see a
link to the default interactions. If you click on it, you will be directed to the following
page:

Now you can also see that nine interactions are added to the map by default. It
would be quite verbose to add them one by one just to keep them when we define
only one extra interaction, wouldn't it?

http://www.openlayers.org/en/v3.11.0/apidoc/
http://www.openlayers.org/en/master/apidoc/

Creating Simple Maps with OpenLayers 3

[10]

You can see some features marked as experimental while you browse the
API documentation with the Stable Only checkbox unchecked. Do not
consider those features to be unreliable. They are stable, but experimental,
and therefore they can be modified or removed in future versions. If the
developer team considers a feature is useful and does not need further
optimization or refactoring, it will be marked as stable.

Understanding type definitions
For every constructor and function in the API, the input and expected output
types are well documented. To see a good example, let's search for a function with
inputs and outputs as well. If you search for ol.proj.fromLonLat, you will see the
following function:

The function takes two arguments as input, one named coordinate and one named
projection; projection is optional. coordinate is an ol.Coordinate type (an
array with two numbers), while projection is an ol.proj.ProjectionLike type
(a string representing the projection). The returned value, as we can see next to the
white arrow, is also an ol.Coordinate type, with the transformed values.

A good developer always keeps track of future changes in the library. This
is especially important with OpenLayers 3 when a major change occurs,
as it lacks backward compatibility. You can see all of the major changes in
the library in the OpenLayers 3 GitHub repository: https://github.
com/openlayers/ol3/blob/master/changelog/upgrade-notes.
md.

https://github.com/openlayers/ol3/blob/master/changelog/upgrade-notes.md
https://github.com/openlayers/ol3/blob/master/changelog/upgrade-notes.md
https://github.com/openlayers/ol3/blob/master/changelog/upgrade-notes.md

Chapter 1

[11]

Debugging the code
As you will have noticed, there was a third file in the OpenLayers 3 folder discussed
at the beginning of the chapter (js/ol3-3.11.0). This file, named ol-debug.js,
is the uncompressed source file, in which the library is concatenated with all of its
dependencies. We will use this file for two purpose in this book. Now, we will use it
for debugging. First, open up ch01_simple_map.js. Next, extend the init function
with an obvious mistake:

var geometry = new ol.geom.Point([0, 0]);
vectorLayer.getSource().addFeature(geometry);

Don't worry if you can't spot the error immediately. That's what is debugging for.
Save this extended JavaScript file with the name ch01_error.js. Next, replace the
old script with the new one in the HTML file, like this:

<script type="text/javascript" src="ch01_error.js"></script>

If you open the updated HTML, and open your browser's developer console, you
will see the following error message:

Now that we have an error, let's check it in the source file by clicking on the error
link on the right side of the error message:

Creating Simple Maps with OpenLayers 3

[12]

Quite meaningless, isn't it? The compiled library is created with Google's Closure
Library, which obfuscates everything by default in order to compress the code. We
have to tell it which precise part of the code should be exported. We will learn how
to do that in the last chapter. For now, let's use the debug file. Change the ol.js in
the HTML to ol-debug.js, load up the map, and check for the error again:

Finally, we can see, in a well-documented form, the part that caused the error. This is a
validating method, which makes sure the added feature is compatible with the library.
It requires an ol.Feature as an input, which is how we caught our error. We passed a
simple geometry to the function, instead of wrapping it in an ol.Feature first.

Summary
In this chapter, you were introduced to the basics of OpenLayers 3 with a more
advanced approach. We also discussed some architectural considerations, and some
of the structural specialties of the library. Hopefully, along with the general revision,
we acquired some insight in using the API documentation and debugging practices.
Congratulations! You are now on your way to mastering OpenLayers 3.

In the next chapter, we will discuss which parts of the rendered elements can be
changed with pure CSS, and what elements can be changed with CSS-like style
properties. We will also learn how to change the appeal of the map, and thereby
make our application blend in with our current project.

[13]

Applying Custom Styles
We covered the basics of the library in the previous chapter. Before moving on and
learning how to code great applications with the library, we will cover the basics of
applying custom styles with CSS and the methods offered by OpenLayers 3. The CSS
part requires some basic knowledge in styling, but the more advanced techniques
will be discussed in greater details.

In this chapter, we will cover the following topics:

• Modifying the default appearance of the map with CSS
• Applying custom styles to vector layers
• Customizing controls
• Creating a WebGIS application layout

Before getting started
Before moving on and customizing the default appearance, we should talk about
its rendering process. OpenLayers 3 is a canvas-based web mapping library, which
means that it draws everything it can on a single canvas element. This not only
makes the rendering process faster, but also prevents direct styling with CSS.
However, there are some parts rendered as pure DOM elements. These parts,
specifically the controls, overlays, and drag boxes, can be styled directly. For the
other parts, like vector data, the capabilities of the canvas element can be used for
styling, mostly with inner methods. We will discuss rendering in a later chapter in
more detail. For now, keeping this nature of the library in mind should be enough.

Applying Custom Styles

[14]

Using the DOM renderer opens up new possibilities in CSS styling.
However, it cannot render vector data in SVG format; therefore, you
can only style image layers directly. The library also loses performance;
thus, using the DOM renderer should be considered as a generally bad
practice. Renderers in OpenLayers 3 will be discussed in more detail in
Chapter 7, Mastering the Renderers.

Basic considerations
From now on, step by step, we will make a simple WebGIS application with
OpenLayers 3. In most of the chapters, we will extend the code created in the
previous one. To make it clear, we will consider the current goal at the beginning
of every chapter.

In this chapter, after a few warm-up examples, we will make the layout of our
application. We will make a highly adaptable full-screen application; therefore, we
will use relative units whenever it is possible. We will also make sure that our design
does not prevent the usage of the default one. For now, the application will have
three parts. The map canvas will display the map, the toolbar will contain the control
buttons (the tools), and the notification bar will inform the user about the state of our
application in various ways.

Customizing the default appearance
Now that we are clear about what parts can be customized with CSS, let's make an
attempt to use it in practice. Firstly, we will need the code from the example in the
previous chapter. If you look at the code appendix, you will see some files starting
with ch02_css. The html and js files are exactly the same as we used in the last
chapter. In this example, all the magic will take place in the css file.

If you take a look at the html file, you can see our custom css
file is declared after the official css file. This was done due to the
phenomenon called CSS specificity. If two CSS file declarations are
made to the same element with the same specificity, the order of the
declarations will define the styling. As we have declared our custom
css file after the official one, it will overwrite the default styling.

Chapter 2

[15]

Identifying the classes
Open up the first example, called ch02_css.html, in your browser. You can see
the already modified look of the previous example. The question is, how can you
precisely tell which classes you have to modify to get the same results. To identify
the required classes, right-click on one of the controls and then inspect the element.
Your browser's inspector will open up and you will see something similar to the
following screenshot:

On the right, you can see the rules used by the official and our custom css file on the
inspected element. On the left, you can see all the controls' DOM elements and the
classes associated with them by default. These are the classes we have to modify, in
order to alter the default appeal.

Styling the controls
Now that we know which elements can be changed directly with CSS and also
which classes have to be changed to modify the appearance of the application, it's
time to make some declarations. Firstly, let's make some small changes to the default
appearance. We change the controls' original blue glow to a reddish one and make
the overview map appear above the scale bar with the following rules:

body {
 margin: 0px;
}
.map {
 width: 100%;
 height: 100%; /*Fallback*/
 height: 100vh;
}
.ol-control button {
 background-color: rgba(219,63,63,.5);
}

Applying Custom Styles

[16]

.ol-control button:focus {
 background-color: rgba(219,63,63,.5);
}
.ol-control button:hover {
 background-color: rgba(219,63,63,1);
}
.ol-scale-line {
 background-color: rgba(219,63,63,.5);
}
.ol-overviewmap {
 bottom: 2em;
}

Firstly, we remove the margin around the document because this will be a full-screen
application.

The unit can be omitted when the value is zero. The margin: 0;
declaration would give exactly the same result as the preceding one.

Next, we define the size of the map element to match the size of the window. We
declare every button control's color with RGBA values. Finally, we lift the overview
map above the scale bar.

As mentioned previously, we are using relative values for styling, to
make our application is greatly adaptable. For this purpose, the em
value is a great choice, as it depends on the font size of the current
element. We also use the vh (viewport height) value, which is relative
to the viewport; therefore, it precisely stacks with it. As the vh unit has
a limited support, defining a fallback option should be considered.

Let's also change the font type the mouse position control uses to a fixed-width one:

.ol-mouse-position {
 font-family: monospace;
}

Chapter 2

[17]

Specific font families can also be declared in the font-family
property (Times New Roman) as generic families (monospace, serif,
sans-serif). The browser will always try to use the defined font, but
it might not be present on every system. If the defined font is not
available, it tries to apply the most similar font, which can be used on
the given operating system.

Keep in mind that you can provide fallback options, separating
them with commas, and this is a better practice than relying on one
particular font family. Alternatively, just host that particular font
family and include it in a @font-face rule.

Finally, as drag boxes, the zoom box can also be styled with CSS; let's make a rule for
the zoom box specifically:

.ol-dragzoom {
 background-color: rgba(219,63,63,.1);
 border-width: 2px;
 border-color: rgba(219,63,63,1);
}

If you save the current rules to a css file, link it to the example and open it up; you
will see the following screenshot:

Applying Custom Styles

[18]

The controls have a reddish glow instead of the original blue one, the overview map
is placed properly above the scale bar, and the coordinates are displayed with a
fixed-width font type.

Customizing the attribution control
The attribution control has a nice inline styling by default. It is good to go when
we have only a few layers to give credit to, but with more layers, it becomes more
confusing to read. If you have a lot of layers to display, you might need to display
those attributions in a list style. To achieve this effect, we simply overwrite the
display rule of the containing element:

.ol-attribution li {
 display: table;
}

The list-item value is also good to go with the display attribute.
However, with table, you can arbitrarly resize the element, and the
collapse button still remains in its place.

With this styling option, the logo will always be on top, as it is the first element of the
list. This cannot be overridden, but as the element is now taller, we can provide our
logo as a background and optionally disable the one provided by the library. In this
case, we will use my university's seal as a logo:

.ol-attribution ul {
 background-image: url(../../res/university_of_pecs_transparent.
png);
 background-size: contain;
 background-position: 50%;
 background-repeat: no-repeat;
}

The CSS background rules do not allow you to set the opacity for the
background image. You have to modify your image with an editor (for
example, GIMP, PhotoShop, and Paint.NET) if you would like to apply
a transparency to your image.

Chapter 2

[19]

If you extend your css file with these rules and open up the results, you will see the
modified attribute control with our custom logo:

Creating a custom zoom control with CSS
In the next step, let's make a zoom control similar to the one in OpenLayers 2, where
the slider is between the two zoom buttons. At first glance, this job might seem
difficult, but it can be done with pure CSS. Firstly, alter the zoom buttons in such a
way that they will be in circles without the whitish background:

.ol-zoom .ol-zoom-in {
 border-radius: 50%;
}
.ol-zoom .ol-zoom-out {
 border-radius: 50%;
 top: 203px;
 position: relative;
}
.ol-zoom {
 background-color: rgba(255,255,255,0);
}
.ol-zoom:hover {
 background-color: rgba(255,255,255,0);
}

The zoom out button is placed exactly 203 pixels below the zoom in button. This
is due to a single reason: the zoom slider is declared as 200 pixels tall, the buttons
have a 1 pixel margin, and the zoom slider has a 2 pixel padding. Unfortunately, we
cannot do anything about the absolute height of the zoom slider, as the library uses it
to calculate resolutions.

Applying Custom Styles

[20]

We made a note about CSS specificity before. In this case, the reason
behind why we can't use the ol-zoom-in and ol-zoom-out classes
without nesting is the fact that the more specific declaration wins. As
the original declarations are more specific, they would overwrite our
rules. For this reason, we have to make our declarations at least as
specific as the original ones to overwrite them. For more information,
visit the Mozilla Developer Network's related article at https://
developer.mozilla.org/en-US/docs/Web/CSS/Specificity.

Modifying the slider is a bit trickier than customizing the buttons. There are two
main elements: the rail and the thumb. The problem is that the position of the slider
needs to be calculated from an absolute and a relative unit. Fortunately, we can
calculate values with CSS; thus, the following lines solve our problem:

.ol-zoomslider {
 top: calc(1.875em + 6px);
 left: calc(.5em + 12px);
 width: 2px;
}
.ol-zoomslider-thumb {
 background-color: rgba(219,63,63,.5);
 left: -11px !important;
}
.ol-zoomslider-thumb:hover {
 background-color: rgba(219,63,63,1);
}

We can use calc to calculate lengths with simple arithmetic operators
in CSS rules. Remember that, for addition and subtraction, you always
have to provide a whitespace between the operators and values.

As the rail of the slider will only be a narrow line with the thumb centered on it, the
top position of the rail should be the top position of the zoom in button (0.5 em)
added to the height of the button (1.375 em) added to the paddings and margins
(6 px). We have to correct this value by some pixels, which can be done by visual
interpretation. The left position of the rail is calculated from the element's original
left position (0.5 em) and its original width (24 pixels).

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity

Chapter 2

[21]

We fix the thumb to the rail by setting it back to 11 pixels and making an
important exception. We must do it this way, as its left position gets reset
to 0 by the library every time the slider changes. As the code changes, the
inline styling of the element and inline rules have the most specificity; we
can only fix the thumb with the !important exception to the rail with
CSS. If there is any other way, using !important should be avoided.

If you save the whole set of rules to a css file, or use the one provided with the
example, and load it up, you will see our new zoom control in all its splendor:

If you open the example from a touch device, it will be messy and disoriented. This
is due to the library's design patterns. When the application is opened from a touch
device, a class named ol-touch gets applied to the controls, and it overrides some
of our rules. To make it compatible with touch devices, we have to make further
declarations, which you can see in the css file named ch02_touch, too:

.ol-zoomslider, .ol-touch .ol-zoomslider {
 top: calc(1.875em + 6px);
 left: calc(.5em + 12px);
 width: 2px;
}
.ol-touch .ol-zoomslider-thumb {
 width: 22px;
}
.ol-touch .ol-control button {
 font-size: 1.14em;
}

Applying Custom Styles

[22]

As the ol-zoomslider class under the ol-touch class has declarations by default,
which we already made in our custom ol-zoomslider class, we can save lines by
applying our existing rules to the more specific class, too. We can do this by using
a logical OR operator, which is a simple comma in CSS. The rest of the issues can be
solved by making new ol-touch-specific rules.

Styling vector layers
You might or you might not be familiar with vector styling at this point. If you know
about the concept, however, a little revision won't hurt. In this example, we will
change the default vector style of the example dataset to green stars. As vector data is
drawn directly to the canvas by the library, their styles can be changed only by inner
methods with a limited set of values.

You can see a js file named ch02_vector in the code appendix. You can use this file
with the previous example or extend the original one with the following rules:

var vectorLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_capitals.geojson',
 attributions: [
 new ol.Attribution({
 html: 'World Capitals © Natural Earth'
 })
]
 }),
 style: new ol.style.Style({
 image: new ol.style.RegularShape({
 stroke: new ol.style.Stroke({
 width: 2,
 color: [6, 125, 34, 1]
 }),
 fill: new ol.style.Fill({
 color: [25, 235, 75, 0.3]
 }),
 points: 5,
 radius1: 5,
 radius2: 8,
 rotation: Math.PI
 })
 })
});

Chapter 2

[23]

In this simple style object, we define only a point symbolizer. It is a regular shape,
which can be a simple, regular polygon. The polygon can be convex if it has only one
radius value, and concave if it has two. Our star has five points and an outer radius
of 8 pixels. The colors of its stroke, and fill, are expressed in RGBA values, which can
be done by passing an array to their color parameter with four values. As the star
will be upside down by default, we rotate it by 180 degrees The library only accepts
radian values; thus, we have to rotate the star by π.

Using RGBA values is the only way to express opacity in vector styling.
For regular styling with CSS, it is also a good practice as it takes fewer
lines and all the major browsers support it.

Save the updated code, link it to the previous example, and open it up in your
favorite browser. You should see the capitals represented by green stars:

We have only defined a symbolizer for point geometries in our style
object. This means that the line and polygon symbolizers are set to null.
If you use this style object on line, or polygon features, they would
simply not render. To make general style objects for multiple geometry
types, you have to provide at least a stroke style and a fill style
besides image.

Applying Custom Styles

[24]

Customizing the appearance with
JavaScript
Apart from direct styling with CSS, OpenLayers 3 offers some methods to specify
the appearance of our maps. These methods can be used to make such changes in
the behavior of the controls, which would otherwise be quite hard to achieve, if
not impossible. In the next example, we will look at some of the JavaScript-based
customizing options.

If you open up the code attachment, you can see some files named ch02_controls.
In these files, you can examine the changes we made to the previous example. The
main changes, like the title suggests, will be in the JavaScript part of the example.

Changing the overview map and the scale bar
In this example, we will group the controls based on their position on the map. In the
bottom-left corner, we already lifted the overview map above the scale bar. Now, it is
time to change some of their inner properties:

var map = new ol.Map({
 […]
 controls: [
 […]
 new ol.control.ScaleLine({
 units: 'degrees'
 }),
 new ol.control.OverviewMap({
 collapsible: false
 })
 […]
});

The scale bar now shows the scale in degrees, regardless of the map projection. We
will later see that, in a WebGIS application, the unit of this control will be bounded
to the unit of the current projection. However, the valid options for the controls are
only degrees, imperial, nautical, metric, and us.

Chapter 2

[25]

The overview map is now opened and cannot be closed. However, if you save these
changes and open it up in a browser, you can see that the opened overview map
covers up the scale bar again. To resolve this issue, we have to extend our CSS file
with an additional rule:

.ol-overviewmap.ol-uncollapsible {
 bottom: 2em;
}

If we set an otherwise collapsible control to not collapsible, the library gives a specific
class name to the control's DOM element called ol-uncollapsible. Remember
the rules of CSS specificity: the more specific declaration wins. This way, we have
to make our rule at least as specific as the original one, which uses a logical AND
operator between the two classes. We also use this method, which can be achieved in
CSS by concatenating the two class names.

Use the overview map control with great care! It can handle the Web
Mercator projection correctly, but with other projections it is unreliable.
It cannot handle EPSG:4326 at all, and, in the case of custom
projections, it can handle the ones with metric units.

Truncating the coordinate control
The MousePosition control outputs the current mouse coordinates with great
precision. This can be good; however, we will fix it to exactly three digits in the next
step. Luckily, the control offers a property for a preprocessing function. Let's create a
function that can truncate the output to three-digit precision:

new ol.control.MousePosition({
 coordinateFormat: function (coordinates) {
 var coord_x = coordinates[0].toFixed(3);
 var coord_y = coordinates[1].toFixed(3);
 return coord_x + ', ' + coord_y;
 }
})

The function receives an array with two coordinates as an input, and requires a
string as an output. We separate the array members into variables and fix them to
three decimal places with JavaScript's toFixed function. Next, we return the fixed
numbers converted to a string.

Applying Custom Styles

[26]

When a number is added to a string with the JavaScript's arithmetic +
operator, it makes an automatic type conversion and concatenates the
number(s) to the string(s). In our case, add the coordinate values to a
string containing a comma, and a whitespace is enough to return an
automatically converted string.

Changing the attribution
The goal of this step is to rework the attribution element's appearance and content a
little bit. We will change the font type of the attribution control and the logo of the
map. The logo is a rarely mentioned element of the map, but it plays an important
role in every organization. This logo represents the given organization, and in most
cases, it gets on the map in one way or another. OpenLayers 3, however, offers a
method to define our custom logo and displays it in the attribution control.

Firstly, let's declare some rules for a new CSS class. It contains the required
information to style the font of the attribution control:

.info-label {
 font-family: Palatino, serif;
 font-style: italic;
}
.ol-attribution img {
 max-width: 2em;
}

The second rule is required to create an IE-compatible application. The
default max-width rule is interpreted differently by Internet Explorer
11 than any other major browser; therefore, we need to give it an exact
value. The 2 em value is the same as declared for max-height by
default.

Next, we create a span element in our JavaScript code to apply our newly created
custom style on it:

var infoLabel = document.createElement('span');
infoLabel.className = 'info-label';
infoLabel.textContent = 'i';

If you would like to add some text to the element, always use
textContent instead of innerHTML. As innerHTML tries to parse its
content as HTML, textContent is much faster. There are also some
security vulnerabilities behind innerHTML, but they are related to the
user input and are out of the scope of this book.

Chapter 2

[27]

Now, we just have to include our custom element in the attribution control's
constructor:

new ol.control.Attribution({
 label: infoLabel
})

For the custom logo, we have to supply an object containing its attributes to the
map object. Then, the logo will appear in the attribution control. The object has a
mandatory url and an optional href parameter:

var map = new ol.Map({
 […]
 logo: {
 src: '../../res/university_of_pecs.png',
 href: 'http://www.ttk.pte.hu/en'
 }
});

If the logo does not have a link, it can be directly included as a single
URL string to the logo parameter.

If you put every part of the code in place, save them and load the result in a browser;
you will see the following customized map:

Applying Custom Styles

[28]

You can also customize the appearance of the attribution control with some simple
CSS rules:

.ol-attribution span {
 font-family: Palatino, serif;
 font-style: italic;
}

However, these rules also apply to the » symbol shown when the control is not
collapsed:

Creating a WebGIS client layout
Now that we are quite familiar with the possibilities of styling our maps with CSS
and the inner methods, the next step is to create the layout of a WebGIS application.
This step requires us to rethink our design patterns. The goal of this chapter is to
create an application-specific design that doesn't prevent future developers from
using the default options. This way, we can create a general wrapper API, which
extends the capabilities of the library in a developer-friendly way.

Building the HTML
First, let's extend the HTML part of our application. For a proper WebGIS client,
the map canvas is only a part of the complete application. As mentioned in the
beginning, for now, we only build the tool bar and the notification bar. We extend
the HTML like in the example named ch02_webgis.html:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Chapter 2 - Preparing a WebGIS Application</title>
 <link href="../../js/ol3-3.9.0/ol.css" rel="stylesheet">
 <link href="ch02_webgis.css" rel="stylesheet">
 <script type="text/javascript" src="../../js/ol3-
3.9.0/ol.js"></script>

Chapter 2

[29]

 <script type="text/javascript"
src="ch02_webgis.js"></script>
 </head>
 <body>
 <div class="map-container">
 <div id="toolbar" class="toolbar"></div>
 <div id="map" class="map">
 <div class="nosupport">Your browser doesn't seem
to support this application. Please, update it.</div>
 </div>
 <div class="notification-bar">
 <div id="messageBar" class="message-bar"></div>
 <div id="coordinates"></div>
 </div>
 </div>
 </body>
</html>

Now we put everything in a map container. The sizes of the element are relative
to the container. We also put a built-in error message in the HTML, which will be
covered up by the map if the browser can load it.

Note that, in a good API, every element is created dynamically
with JavaScript. Hard coding the HTML elements is a bad practice.
We only do this for the sake of simplicity. Creating an API with
JavaScript is out of the scope of this book.

Styling the layout
As you have noticed, we created our HTML by defining simple elements with class
names. We style these elements in a separate CSS file with class-based rules. Firstly,
we style the map container element with the error message:

body {
 margin: 0px;
}
.map-container {
 width: 100%;
 height: 100%; /*Fallback*/
 height: 100vh;
}
.map {
 width: 100%;

Applying Custom Styles

[30]

 height: calc(100% - 3.5em);
}
.nosupport {
 position: absolute;
 width: 100%;
 top: 50%;
 transform: translateY(-50%);
 text-align: center;
}

In Web design, horizontal alignment goes smoothly, but vertical
alignment can be painful. In the nosupport class, you can see the most
typical hack. The absolute positioning allows you to manually align the
element with the parent. Setting the top attribute to 50% pushes down
the element's top-side to the middle of the parent element. Giving it a
-50% vertical transformation with translateY pulls back the element
by 50% of its height.

Next, we style the notification bar. It has two parts, one for the mouse position
control and one for the messages that the application will communicate. Now, we
only style the coordinate indicator:

.notification-bar {
 width: 100%;
 height: 1.5em;
 display: table;
}
.notification-bar > div {
 height: 100%;
 display: table-cell;
 border: 1px solid grey;
 width: 34%;
 box-sizing: border-box;
 vertical-align: middle;
}
.notification-bar .message-bar {
 width: 66%;
}
.notification-bar .ol-mouse-position {
 font-family: monospace;
 text-align: center;
 position: static;
}

Chapter 2

[31]

Regardless of using the div elements, we style the notification bar to render table-
like. This way, we can vertically align the text messages that the application will
output in an easy manner. It needs a parent element with the table display and
child elements with the table-cell display (at least in Internet Explorer).

In an HTML document, every visible element is rendered as a box.
Every box has four edges: content, padding, border, and margin.
By default, browsers use a content-box model, which applies the
computed size only to the content. As we use a 100% width for the
element, but we apply a 1 pixel border, the resulting box will exceed
the maximum width of the screen by 4 pixels. This is why we use a
border-box model, which includes the padding, and the border to
the computed size of the box.

Finally, we style the tool bar for the controls. For now, it can only handle one line of
buttons, but it can be expanded if more controls are needed:

.toolbar {
 height: 2em;
 display: table;
 padding-left: .2em;
}
.toolbar .ol-control {
 position: static;
 display: table-cell;
 vertical-align: middle;
 padding: 0;
}
.toolbar .ol-control button {
 border-radius: 2px;
 background-color: rgba(219,63,63,.5);
 width: 2em;
 display: inline-block;
}
.toolbar .ol-control button:hover {
 background-color: rgba(219,63,63,1);
}

As before, the styling of the control buttons are basically the same. The only
difference is that we give them an inline-block display if they are in the tool
bar. This way, the zoom controls, which are vertically stacked by default, become
horizontally aligned. We vertically center the elements of the tool bar with the table
method described above.

Applying Custom Styles

[32]

By specifying the style of the controls under our custom classes, they will
always overwrite the default declarations. However, our styles are only
applied if the controls are placed in the appropriate containers. If they are
targeted at the map canvas, they won't be affected by our rules.

Writing the code
With the CSS rules and the HTML elements in place, the final task is to write the
code part of the example. The code will be based on the previous example; however,
we will strip it down to only contain the most necessary parts:

var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 }),
 new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_capitals.geojson',
 attributions: [
 new ol.Attribution({
 html: 'World Capitals © Natural Earth'
 })
]
 })
 })
],
 controls: [
 new ol.control.Zoom({
 target: 'toolbar'
 }),
 new ol.control.MousePosition({
 coordinateFormat: function(coordinates) {
 var coord_x = coordinates[0].toFixed(3);
 var coord_y = coordinates[1].toFixed(3);
 return coord_x + ', ' + coord_y;
 },

Chapter 2

[33]

 target: 'coordinates'
 })
],
 view: new ol.View({
 center: [0, 0],
 zoom: 2
 })
});

We cut out the entire interactions part. This way, we don't have to save the vector
layer into a separate variable. We keep the base layer and the vector layer to have
something for our map to display. We cut out most of the controls and only define
the zoom buttons and the mouse position controls. As we do not extend the default
set of controls, but instead define some, the default ones won't be present in our map,
unless we add them manually.

The main extension to the previous examples is the placement of the controls. We can
specify where OpenLayers 3 should place a control with the target parameter. We
can provide a DOM element, or just simply the id of our element of choice. We place
our controls according to our design in the tool bar and the coordinate container. If
you save the complete example and open it up, you will see our application:

Applying Custom Styles

[34]

Summary
In this chapter, we learned how to style the appeal of our application with CSS and
JavaScript styling methods, effectively. Take some friendly advice: in programming,
there is rarely only one good solution. This rule greatly applies to CSS. It offers
several methods to achieve one particular effect. If you learn to utilize most of its
capabilities, you can easily create better a design than the simple ones described in
this chapter (for example, with flexible boxes, filters, and other effects).

In the next chapter, we will learn how to manage layers. We will learn to
dynamically add layers, remove layers, change their order, and draw them in a
custom layer tree.

[35]

Working with Layers
Now that we have learned the basics of creating a frame for our custom WebGIS
client, we will proceed to build a fully operational layer tree. Through out the
chapter, we will revise how to manage the layer stack of OpenLayers 3 and utilize
these capabilities in our application.

In this chapter, we will cover the following topics:

• Adding and removing layers dynamically
• Adding layers with the HTML5 File API
• Changing layer attributes based on user input
• Changing the order of a layer with the HTML5 Drag and Drop API

Before getting started
In the previous chapters, we discussed the HTML and CSS parts quite thoroughly.
From now on, we will focus on the JavaScript part of the application. We will use
native JavaScript (no jQuery, ExtJS, or other libraries) to build our application. This
way, we will have a better understanding of the native language, rather than a
library's abstraction methods. Eventually, our code will be more verbose, but this
is a price we are willing to pay in order to gain better insight into JavaScript.

Working with Layers

[36]

Using a proxy
For this chapter, I have adapted a simple Python proxy file to use from the one made
by the OpenLayers Contributors for OpenLayers 2. As we will use AJAX requests to
fetch features and metadata, we can easily bump into real CORS restrictions. These
restrictions can only be resolved by a server-side proxy script, which requests the
data from the target server and forwards it to us. From this moment on, the data will
be from the same origin as the proxy script on the same server, which is similar to
our application.

To use the proxy script, we will need two things: a Python interpreter and a running
web server. If you don't have both of these, you won't be able to use the proxy. In
this case, you will have to use a map server, which allows CORS requests.

If you've used a Python server before, it won't be sufficient now. We
need to access a CGI script; therefore, you have to start a different
Python server. If you use Python 2, you can create CGIHttpServer.
With Python 3, you just have to start your server with the --cgi flag.

If you have a web server and Python installed in it, you can find the proxy file in the
code appendix as proxy.py. Copy the file into your server's cgi-bin folder. Note
that you may have to modify the relative paths in the examples that are based on
your server's layout.

If your web server is public, don't use the proxy script! It is a dead
simple script without any validation, sanitization, or security checks. If
people can access your server from the Internet, they can use it for bad
purposes, and as a consequence, charges can even be brought against
you.

Resources to use
Through the examples used in this book, we will build a complete GUI for layer
management. This involves adding layers from different sources with the help of
forms. As some of the forms need valid resources to work with, called map servers, we
will need some URLs to test our application on. The two most common open source
map servers are MapServer and GeoServer. They have slightly different semantics that
need some consideration when we automatize the data requesting process. We will use
the following demo servers, layers, and projections for testing purposes:

• For WMS, refer to the following:
 ° http://demo.opengeo.org/geoserver/wms (GeoServer without the

CORS restriction)

Chapter 3

[37]

 ° http://demo.mapserver.org/cgi-bin/wms (MapServer with the
CORS restriction)

• For WFS, refer to the following:

 ° http://demo.opengeo.org/geoserver/wfs (GeoServer with the
CORS restriction)

 ° Layers: topp:states and osm:water_areas
 ° Projection: EPSG:3857
 ° http://demo.mapserver.org/cgi-bin/wfs (MapServer with the

CORS restriction)
 ° Layers: cities and continents
 ° Projection: EPSG:4326

Note that these demo servers are made available for use free of cost by Boundless
and the University of Minnesota Twin Cities. Respect them by using their servers
responsibly and not exploiting their services.

Basic considerations
The layer tree will consist of two parts: the layer container with the layer elements
and the control buttons. The buttons will be responsible to add and remove layers.
The layer container will contain the layers in reverse order, which are as usual in the
GIS software. Some of the layers' attributes will be ported to the elements, giving us
the ability to change them through the GUI. The layer tree will have a reference to
the map object and message bar, giving it the capability of making changes in the
map and notifying us of every significant change.

Building a layer tree
If you look up the examples for this chapter, you will see some files with the ch03_
layertree prefix. These files contain the first example. In this example, we will build
the base of our layer tree and add the two layers from the previous example to it.
First, take a look at the HTML file. We only add one single div element to the map,
which we will dynamically fill with content:

 [...]
 <div id="layertree" class="layertree"></div>
 <div id="map" class="map">
 [...]

Working with Layers

[38]

Styling the layer tree
In the next step, we will style the content of the layer tree with CSS. If you look at the
CSS file for the example, you can see that there are quite a lot declarations in it. First,
we will create some rules for the whole element:

.layertree {
 width: 20%;
 height: calc(100% - 3.5em);
 float: left;
 [...]
}

In spite of not showing the full HTML and CSS code here, in order
to preserve valuable space, you must use the full versions from the
example to get correct results. For the JavaScript part, you can proceed
with the book. As we mainly focus on JavaScript, we won't skip any of
the code contained in it.

We float the layer tree to the left-hand side of our map as expected from the GIS
software. Next, we style the containers and layer elements:

.layertree .layertree-buttons {
 height: 2em;
 border-bottom: 1px solid grey;
}
.layertree .layercontainer {
 position: relative;
 height: calc(100% - 2em);
 overflow-y: auto;
}
.layercontainer .layer {
 position: relative;
 height: 2em;
 [...]
}
.layer span:first-of-type {
 position: absolute;
 left: 1.5em;
 max-width: calc(100% - 1.5em);
 [...]
}

Chapter 3

[39]

We position the button and layer containers, respectively, give them height values
for overflow to work, and go on to the layer elements. The first span in the element
will be the layer's name. We give it the absolute position so that later on, the
visibility check box can be positioned before it. Finally, we borrow OpenLayers 3's
ol-unselectable class for our cause.

Absolutely positioned elements are positioned relative to their closest
positioned ancestor. If you want to style an absolutely positioned
element relative to one of its ancestors, you have to position that ancestor
too. This is why we give the containers a relative position. The reason
behind why we position the layer name absolutely is that, this way,
it is taken out of the natural flow of elements; therefore, the visibility
checkbox can be fitted before it.

Creating a layer tree constructor
To make the whole layer management logic clear and reusable, we choose an
API-like solution. We create a layer tree object with a constructor and leave every
operation to it using the object methods. This way, we only have to provide a
reference to our map object, id of the layer tree element, and id of the message bar
element. Everything else will be handled by our object automatically:

As a frontend developer, you are most likely to be familiar with the
concept of constructor functions. However, there is one thing that
we should note about them. In JavaScript, constructors can be called
simple functions without using the new keyword. This results in an
undefined returned by the constructor and a nicely changed global
context where, in this case, this defaults to the global window object.

var layerTree = function(options) {
 'use strict';
 if(!(this instanceof layerTree)) {
 throw new Error('layerTree must be constructed with the
new keyword.');
 } else if (typeof options === 'object' && options.map && options.
target) {
 if (!(options.map instanceof ol.Map)) {
 throw new Error('Please provide a valid OpenLayers 3
map object.');
 }

Working with Layers

[40]

 this.map = options.map;
 var containerDiv = document.getElementById(options.target);
 if (containerDiv === null || containerDiv.nodeType !== 1)
{
 throw new Error('Please provide a valid element id.');
 }
 this.messages = document.getElementById(options.messages)
||
 document.createElement('span');

To prevent the preceding unwanted behavior, you can use the strict
mode by making a use strict declaration at the beginning of your
constructor function. In the strict mode, this defaults to undefined;
therefore, the constructor throws an error if it is called without the new
keyword (as a simple function).

In the first part of the code, we process the parameters that are provided by the user.
The parameters are expected to be wrapped in an object with property names, such
as map, target, and messages. As you can see, we are using two methods to validate
the user input. If an essential parameter is missing or the constructor is called a
simple function, we throw a user-friendly error, while in other cases, we just use a
predefined value.

In further examples, we won't validate every user input to preserve
space. However, you should always validate every user input and
throw user-friendly errors or messages accordingly. This makes the
code more stable and also improves the user experience. Remember:
you can throw an error in the natural flow of the code as it acts as a
return statement and stops it.

Next, we create the container elements and add them to the target element:

 var controlDiv = document.createElement('div');
 controlDiv.className = 'layertree-buttons';
 containerDiv.appendChild(controlDiv);
 this.layerContainer = document.createElement('div');
 this.layerContainer.className = 'layercontainer';
 containerDiv.appendChild(this.layerContainer);

Chapter 3

[41]

Now that the environment is set up, we can proceed to add layers to the layer tree.
For this task, we create a function that expects a layer object as input and creates a
registry based on the layer properties:

 var idCounter = 0;
 this.createRegistry = function(layer) {
 layer.set('id', 'layer_' + idCounter);
 idCounter += 1;
 var layerDiv = document.createElement('div');
 layerDiv.className = 'layer ol-unselectable';
 layerDiv.title = layer.get('name') || 'Unnamed Layer';
 layerDiv.id = layer.get('id');
 var layerSpan = document.createElement('span');
 layerSpan.textContent = layerDiv.title;
 layerDiv.appendChild(layerSpan);
 this.layerContainer.insertBefore(layerDiv,
this.layerContainer.firstChild);
 return this;
 };

There is one big consideration we have to make here: how do we link the layers to
the appropriate layer tree elements? To overcome this problem, we use quite a secure
method by creating a private idCounter member and a privileged createRegistry
method, which can access this variable. We call it createRegistry as it creates a
registry inside our layer tree; therefore, this name refers to our code's architectural
design. This way, the code can only be broken if someone (or something) changes the
id property of the layer object. We create the layer element, add the unique ID to it,
and insert it on top of the layer stack, visually representing the order of the layers.

Private members can be created by simple var declarations inside
a function. If a private member is created in an object constructor or
method, a privileged method can access it. A privileged method is a
method that's declared in the same scope as the private member that it
uses (in our case, the constructor function).

Finally, we close our constructor by throwing an error if the input is not an object or
any of the parameters are missing:

 } else {
 throw new Error('Invalid parameter(s) provided.');
 }
};

Working with Layers

[42]

When a method makes local changes to your object, you can always
return the modified object at the end of the method. This way, the
object's methods will be chainable and it will be more convenient to
use. However, as the new keyword always tries to return an object, if
it is used with a valid constructor, the constructor functions should be
void (there should not be a return statement in the end).

There's only one thing left to do: instantiate the layer tree in the init function, and
add the layers to the layer tree via its createRegistry method. We also have to add
a name parameter to our layers as the method will try to use it to display the layer's
name. As we created the constructor function and the chainable method earlier, we
can execute the whole process in one call:

var tree = new layerTree({map: map, target: 'layertree', messages:
'messageBar'})
 .createRegistry(map.getLayers().item(0))
 .createRegistry(map.getLayers().item(1));

As layers are wrapped in an ol.Collection object in OpenLayers 3, we can call
them with the item method one by one. If you save the whole code and open it
in a browser, you will see our layer tree up and running in the way that we have
designed it:

Chapter 3

[43]

Adding layers dynamically
Now that we have a basic layer tree, it's time to add some logic when adding
layers. In this example, called ch03_addlayer, we will extend our code so far with
some layer requesting and WMS metadata fetching capabilities. We will add every
additional method to the object's prototype for the sake of clarity and performance.

Creating the interface
To keep things simple, we first hard code some forms in the HTML part. We will be
able to add layers by filling out and submitting these forms. This will only need some
event listeners in the JavaScript code. As these forms are quite verbose, we will only
discuss the most important parts here. You can see the full code in the example's
HTML file:

<div id="addwms" class="toggleable" style="display: none;">
 <form id="addwms_form" class="addlayer">
 [...]
 <td><input id="wmsurl" name="server" type="text"
 required="required" value="http://demo.opengeo.
org/geoserver/wms"></td>
 <td><input id="checkwmslayer" name="check"
type="button"
 value="Check for layers"></td>
 [...]
 <td><select name="layer"
required="required"></select></td>
 [...]
 <td><input name="displayname" type="text"></td>
 [...]
 <td><select name="format" required="required"></
select></td>
 [...]
 <td><input type="checkbox" name="tiled"></td>
 [...]
 <td><input type="submit" value="Add layer"></td>
 <td><input type="button" value="Cancel"
 onclick="this.form.parentNode.style.display =
'none'"></td>
 [...]

The forms basically consist of a div and form element with ids, some required fields,
optional fields, a submit button, and a cancel button. The cancel button hides the
form with a simple inline expression. We default the URL to the demo GeoServer
instance, which is provided by Boundless.

Working with Layers

[44]

Giving form members a name makes them accessible from the form's
DOM object as properties. Just make sure that the names are unique in
a single form.

Showing the appropriate form will be handled by our object, but the actions that are
triggered by clicking on a form button, other than cancel, won't be. We assign events
to these buttons manually using the init function:

document.getElementById('checkwmslayer').addEventListener('click',
function () {
 tree.checkWmsLayer(this.form);
});
document.getElementById('addwms_form').addEventListener('submit',
function (evt) {
 evt.preventDefault();
 tree.addWmsLayer(this);
 this.parentNode.style.display = 'none';
});
document.getElementById('wmsurl').addEventListener('change', function
() {
 tree.removeContent(this.form.layer)
 .removeContent(this.form.format);
});
document.getElementById('addwfs_form').addEventListener('submit',
function (evt) {
 evt.preventDefault();
 tree.addWfsLayer(this);
 this.parentNode.style.display = 'none';
});

The first event triggers our object's WMS metadata fetching capability. The second
event disables the browser's default behavior of redirecting on form submission, and
then it adds a WMS layer to the map with our object. The third event is a security
consideration, which includes clearing out the layer and format options when we
change the URL. Don't worry about these unknown methods as yet; we will cover
them later on in this chapter.

Note that forms and form-related events should be generated
dynamically by the object in the production code.

Chapter 3

[45]

Extending the constructor
As we would like to add two buttons to the button container automatically, we first
add a helper method to our object's prototype:

layerTree.prototype.createButton = function (elemName, elemTitle,
elemType) {
 var buttonElem = document.createElement('button');
 buttonElem.className = elemName;
 buttonElem.title = elemTitle;
 switch (elemType) {
 case 'addlayer':
 buttonElem.addEventListener('click', function () {
 document.getElementById(elemName).style.display =
'block';
 });
 return buttonElem;
 default:
 return false;
 }
};

This method creates a button and adds properties provided as arguments. It uses
a switch statement as we will need to extend it later when we add a delete button
to the layer switcher. For now, it registers an event to the button, which makes the
appropriate form visible when it's clicked. Next, we extend the constructor function:

[…]
controlDiv.appendChild(this.createButton('addwms', 'Add WMS
Layer', 'addlayer'));
controlDiv.appendChild(this.createButton('addwfs', 'Add WFS
Layer', 'addlayer'));
[…]
this.map.getLayers().on('add', function (evt) {
 if (evt.element instanceof ol.layer.Vector) {
 this.createRegistry(evt.element, true);
 } else {
 this.createRegistry(evt.element);
 }
}, this);
[…]

Working with Layers

[46]

You can call any method that is added to an object's prototype directly
in its constructor function. The naked object gets all of its prototype
methods on instantiation before it gets shaped by the constructor
function. Adding methods to an object's prototype also speeds up
instantiation; therefore, the whole code.

As the createButton method returns the button element that it creates, we can
directly append it to its container in a single call. Next, we add an event listener to
the layers' collection object.

In OpenLayers 3, every change event that is triggered is handled by
the nearest ol.Observable child to the source of the event. For
example, layer events are triggered by the layers collection object,
feature change events are triggered by their source object, while
rotation change events are triggered by the view object.

As you have probably noticed, we use two versions of the createRegistry method.
If the layer is a vector, we add an additional true to the arguments. Let's see the
modified method to clear things up:

this.createRegistry = function (layer, buffer) {
 [...]
 layerDiv.className = buffer ? 'layer ol-unselectable
buffering' :
 'layer ol-unselectable';
 [...]
};

We use a ternary operator to decide whether we have to add an additional buffering
class to the layer element's class list. But why? To put the last part of the puzzle in
place, let's take a look at our addBufferIcon method:

layerTree.prototype.addBufferIcon = function (layer) {
 layer.getSource().on('change', function (evt) {
 var layerElem = document.getElementById(layer.get('id'));
 switch (evt.target.getState()) {
 case 'ready':
 layerElem.className = layerElem.className.replace(/
(?:^|\s)(error|buffering)(?!\S)/g, '');
 break;
 case 'error':
 layerElem.classList.add('error');
 break;

Chapter 3

[47]

 default:
 layerElem.classList.add('buffering');
 break;
 }
 });
};

You can use JavaScript's ternary (conditional) operator to substitute a
simple if-else statement with a single operator. The syntax is condition
? expression, if condition is true : expression, if
condition is false.

With this method, we register an event listener to a layer's source object. The listener
listens to every change event, which only occurs if the source's state changes.
However, the event won't carry the state of the source (which can be classified
as undefined, error, ready, or loading); we have to ask the source for it using the
source's getState method.

You can listen to a single image source's ready status by registering
a listener on its imageloadend event. However, tiled sources only
have a tileloadend event, which fires every time a single tile has
been loaded.

If the source's status is ready, then we remove the error or buffering classes
from the element with a regular expression, while in other cases, we add them to it
accordingly. The reasons behind this are that we use this check only for vector layers;
they need some time to get processed, and they fire their change event consistently.
For raster layers, defining their state can be cumbersome (especially for tile sources).

Knowing how to use regular expressions can be a powerful tool for
string manipulation. The preceding expression consists of a noncapturing
group ((?:^|\s)), capturing group ((error|buffering)), negative
look ahead ((?!\S)), and a global flag (g). It says this: look for the start
of the line or a whitespace. Found one? Don't capture it, just stay sharp!
Look for the error, or bufferingstrings. Got one? Capture it! Now,
look at the character after the captured string. Is it a whitespace? No?
Great, then we have a match. Don't stop, we have a global flag, so search
the entire input string for possible matches!

Working with Layers

[48]

Before going further, let's refer to the CSS file of the example. There are some rules
for the forms, which we won't discuss here, but there are also some more important
declarations that determine the look of our buttons and vector layer states:

.layertree .layertree-buttons button {
 height: 2em;
 width: 2em;
 [...]
 position: relative;
 top: 50%;
 transform: translateY(-50%);
 vertical-align: middle;
}
.layertree-buttons .addwms {
 background-image: url(../../res/button_wms.png);
}
[…]
.buffering span::after {
 content: '*';
}
.error {
 border-color: red;
}

The buttons are positioned with both of the methods that are mentioned in the
previous chapter. This ensures compatibility with Firefox, which uses the vertical-
align rule. The other browsers use the vertical transformation. We provide visual
identifiers to the buttons via background images. Finally, the loading sign will be a
simple star that's appended to the layer's name. An erroneous layer will have a red
border, but this is a very rare phenomenon in OpenLayers 3. If you load the example,
you will see the two buttons in their place:

Chapter 3

[49]

Fetching the WMS metadata
OpenLayers 3, like its predecessor, provides a great perk such as knowing how to
serialize the GetCapabilities response from a map server. Up until now, it only
allowed us to use it for WMS and WMTS. The lack of a WFS capabilities object is not
necessarily a problem, and we will see why later on in the chapter. For now, let's
create a method that helps us create options for the available layers and formats on a
WMS server from its capabilities response. First, let's create some utility methods:

layerTree.prototype.removeContent = function (element) {
 while (element.firstChild) {
 element.removeChild(element.firstChild);
 }
 return this;
};

layerTree.prototype.createOption = function (optionValue) {
 var option = document.createElement('option');
 option.value = optionValue;
 option.textContent = optionValue;
 return option;
};

The first method clears out the entire element that's been given as an argument,
while the second one creates an option element, gives it properties based on our
input value, and returns it. As we will use both of them multiple times, it is a good
practice to export them as individual methods. Next, let's create the metadata
processing method:

layerTree.prototype.checkWmsLayer = function (form) {
 form.check.disabled = true;
 var _this = this;
 this.removeContent(form.layer).removeContent(form.format);
 var url = form.server.value;
 url = /^((http)|(https))(:\/\/)/.test(url) ? url : 'http://' +
url;
 form.server.value = url;

Working with Layers

[50]

The method expects a form DOM object and requests capabilities based on the form's
input values. The first part disables the check button from the time of processing. It
goes on and prepends http:// to the URL if the protocol is missing. It also updates
the form's URL field as the addWmsLayer method will use the same form object.
Now, we can go on and create the AJAX request:

 var request = new XMLHttpRequest();
 request.onreadystatechange = function () {
 if (request.readyState === 4 && request.status === 200) {
 var parser = new ol.format.WMSCapabilities();
 try {
 var capabilities =
parser.read(request.responseText);
 var currentProj = _this.map.getView().getProjection().
getCode();
 var crs;
 var messageText = 'Layers read successfully.';
 if (capabilities.version === '1.3.0') {
 crs = capabilities.Capability.Layer.CRS;
 } else {
 crs = [currentProj];
 messageText += ' Warning! Projection compatibility
could not be checked due to version mismatch (' +
capabilities.version + ').';
 }

The parser can only read the list of projections from the WMS 1.3.0
responses. If you have to deal with a previous version, you can default
the projection to the currently used one. Eventually, if the WMS does
not support the default projection, the layer simply won't load.

As the request can fail due to a mistype of the URL and other bad URLs, we
will wrap the whole process in a try-catch-finally clause. AJAX requests (as the
acronym suggests) are asynchronous; therefore, we have to assign a listener to its
readystatechange event and check if everything went well. If this is the case, we
can go on and process the serialized results. We check the projections the WMS
supports, and grab a reference to our current projection.

Chapter 3

[51]

By default, the this keyword refers to the context it has been called
from. In our methods, the context is our object. However, as we define
an event listener, we scope our object and scope into the one we
assigned the listener to. Because we need our object's methods inside
the listener function, we have to solve this issue. One way to do it is by
assigning this to a variable while it still refers to our object.

Next, we check conditions against the layers from the response. If our current map
projection is supported and there is at least one layer served, the function creates
options based on the layer names and the propagated format values:

 var layers = capabilities.Capability.Layer.Layer;
 if (layers.length > 0 && crs.indexOf(currentProj)
> -1) {
 for (var i = 0; i < layers.length; i += 1) {
 form.layer.appendChild(_this.
createOption(layers[i].Name));
 }
 var formats = capabilities.Capability.Request.
GetMap.Format;
 for (i = 0; i < formats.length; i += 1) {
 form.format.appendChild(_this.
createOption(formats[i]));
 }
 _this.messages.textContent = messageText;
 }

Next, we display the error message in the notification bar if something bad has
happened during the parsing process. We also enable the check button, regardless of
the error type:

 } catch (error) {
 _this.messages.textContent = 'Some unexpected
error occurred: (' + error.message + ').';
 } finally {
 form.check.disabled = false;
 }
 } else if (request.status > 200) {
 form.check.disabled = false;
 }
 };

Working with Layers

[52]

Finally, we send the request to the destination server after doing a final check on the
URL:

 url = /\?/.test(url) ? url + '&' : url + '?';
 url = url + 'REQUEST=GetCapabilities&SERVICE=WMS';
 request.open('GET', '../../../cgi-bin/proxy.py?' +
encodeURIComponent(url), true);
 //request.open('GET', url, true);
 request.send();
};

As a final check, we decide how to parameterize the URL. If we use GeoServer, it
probably does not have any parameters in the URL so far; therefore, we need to start
them with a ? token. In the case of using MapServer, the URL is possibly pointing
to a mapfile as a parameter; therefore, we need to continue and add some more
parameters with the help of an & token. Next, if we use the proxy file, we encode the
final URL because sending special characters to the server (especially with Python 2's
SimpleHttpCGIServer) can cause an error. Finally, we can send the request through
our proxy script.

This is the part where you have to use the second open method if you
can't use the proxy file. If you can use it but the relative path does not
match, just modify it to the correct path.

If you save and load up the example so far, you can see the layers and formats
popping up on a valid URL input:

Chapter 3

[53]

Adding WMS layers
Now that we have a working metadata parser, we create a method to add WMS
layers from the list as shown in preceding screenshot. This method requires the
same form, creates a layer object based on the parameters, and adds it to the map:

layerTree.prototype.addWmsLayer = function (form) {
 var params = {
 url: form.server.value,
 params: {
 layers: form.layer.value,
 format: form.format.value
 }
 };
 var layer;
 if (form.tiled.checked) {
 layer = new ol.layer.Tile({
 source: new ol.source.TileWMS(params),
 name: form.displayname.value
 });
 } else {
 layer = new ol.layer.Image({
 source: new ol.source.ImageWMS(params),
 name: form.displayname.value
 });
 }
 this.map.addLayer(layer);
 this.messages.textContent = 'WMS layer added successfully.';
 return this;
};

First, we create an object based on the general WMS parameters in a structure; the
library accepts the URL, layer name, and the format. Next, as the user can choose
between a single image layer and a tiled layer, we create the layer and the source
object accordingly. Finally, we add the layer to the map.

Both tiled and single-image WMS layers have their ups and downs.
Tiled layers significantly outperform single image layers. On the
other hand, if the map server renders some content on top of the layer
dynamically (such as labels or charts), tiled layers can have duplicated
content or artifacts near tile edges.

Working with Layers

[54]

Adding WFS layers
As the last step of this example, we create a simple method to add WFS layers to
the map. WFS capabilities in OpenLayers 3 are strongly limited. The library can't
read capabilities or build queries; it just requests features based on a URL and
some parameters. Furthermore, it only supports WFS 1.0.0 and 1.1.0. In this simple
method, we request vector layers based on basic parameters. First, we process the
input form and create some related objects:

layerTree.prototype.addWfsLayer = function (form) {
 var url = form.server.value;
 url = /^((http)|(https))(:\/\/)/.test(url) ? url : 'http://' +
url;
 url = /\?/.test(url) ? url + '&' : url + '?';
 var typeName = form.layer.value;
 var mapProj = this.map.getView().getProjection().getCode();
 var proj = form.projection.value || mapProj;
 var parser = new ol.format.WFS();
 var source = new ol.source.Vector({
 strategy: ol.loadingstrategy.bbox
 });

Strategies in vector sources affect the rendering process, not the feature
requests. As OpenLayers 3 uses an internal R-tree to index spatial
data, it can easily select features based on an extent. With bbox, or
tile strategy, you can speed up your application, as features with
a minimum bounding rectangle out of the viewport are not even
considered for rendering.

Next, we construct an AJAX request, default the version to 1.1.0, register an event
listener to it, and send the request to the destination server:

 var request = new XMLHttpRequest();
 request.onreadystatechange = function () {
 if (request.readyState === 4 && request.status === 200) {
 source.addFeatures(parser.readFeatures(request.
responseText, {
 dataProjection: proj,
 featureProjection: mapProj
 }));
 }
 };

Chapter 3

[55]

 url = url + 'SERVICE=WFS&REQUEST=GetFeature&TYPENAME=' +
typeName + '&VERSION=1.1.0&SRSNAME=' + proj;
 request.open('GET', '../../../cgi-bin/proxy.py?' +
encodeURIComponent(url));
 //request.open('GET', url);
 request.send();

The same rule applies here when you use the proxy script. If you can't use it, just
use the second open method, which is commented out. If we get a response from the
server, we process it with our WFS parser and add the features to the source object.

Note that in OpenLayers 3, every feature needs to be present in the
map's projection. You can ask the library to perform this transformation
automatically by setting the appropriate projection parameters in the
readFeatures method or in the format object itself. However, only
readFeatures is consistent among the different formats.

Meanwhile, when the features are being downloaded, we construct the layer object,
call the addBufferIcon method on it (which registers listeners related to the layer's
status), and add it to the map:

 var layer = new ol.layer.Vector({
 source: source,
 name: form.displayname.value
 });
 this.addBufferIcon(layer);
 this.map.addLayer(layer);
 this.messages.textContent = 'WFS layer added successfully.';
 return this;
};

Now, it's time to save and test our code. Take your time to do this and check some
of the resources that we mentioned at the beginning of this chapter. Check the water
areas layer last. While it loads, you can go and grab a coffee. What do you experience
when you play with the layer?

WFS considerations
Web Feature Service is designed to be able to support datasets in variable sizes.
It has a logical server side and spatial filtering capabilities, which depend on the
implementation of WFS and can be accessed via a GetCapabilities request. Sadly,
only the GML support is mandatory in the service specifications, which is very
verbose and produces large responses when bigger datasets are requested.

Working with Layers

[56]

It is also a common practice to store large datasets in a single WFS layer and leave
the filtering to the user. This was the reason behind the long loading time in our case,
too. To effectively use a WFS server, we would need native support for the parsing of
capabilities and query building from OpenLayers 3.

On the other hand, requesting already filtered data is quite unusual in the GIS field.
Users are used to seeing the layer as a whole and apply their own filtering logic in it.
Using canvas-based rendering, OpenLayers 3 has achieved an immense rendering
performance. However, it still relies on the CPU, and rendering 28,539 polygons is
just too much for it. Without proper hardware acceleration (WebGL), rendering large
datasets should be avoided.

OpenLayers 3 can request WFS features based on a loading function. With this
approach, we can request features in the current spatial extent. This can speed up our
larger-scale applications. Dynamic loading is good enough for simple web mapping;
however, in WebGIS, based on the preceding considerations, it should be avoided.
You can see an example of dynamic WFS in the ch03_dynamicwfs.js file between
lines 177 and 196.

Adding vector layers with the File API
The HTML5 File API makes it possible for us to load nearly any kind of file from our
hard drive to a browser and process these files with JavaScript. It has capabilities
way beyond our use case (it can even handle binary files); thus, it is advisable for
every frontend developer to look into it in further detail. The files for this example
are named ch03_fileapi.

First, we create a new form as usual. You can grab it from the HTML file.

Creating the interface
The basic interface to access our new functionality is the same, as shown in the
previous examples. First, we extend our layer constructor, adding a new button to
the layer tree:

var layerTree = function (options) {
[…]
 controlDiv.appendChild(this.createButton('addvector', 'Add
Vector Layer', 'addlayer'));
[…]
};

Chapter 3

[57]

Next, we create a new rule for its button class in our CSS file:

.layertree-buttons .addvector {
 background-image: url(../../res/button_vector.png);
}

We also add a new event listener to our init function to link the form to our object:

document.getElementById('addvector_form').addEventListener('submit',
function (evt) {
 evt.preventDefault();
 tree.addVectorLayer(this);
 this.parentNode.style.display = 'none';
});

Adding a new button to the layer tree, which is based on our knowledge from the
previous example, is simple. If you save the code and load it, you will see the new
option in the button container:

Building the method
As usual, the method accepts a form as an argument. As you have seen in the HTML
file, the parameters are the usual ones, with one exception: the format. We use
some predefined formats for our users to choose from and construct our new layer
accordingly. First, we start our method by initializing some essential parameters and
constructing a new file reader:

layerTree.prototype.addVectorLayer = function (form) {
 var file = form.file.files[0];
 var currentProj = this.map.getView().getProjection();
 var fr = new FileReader();
 var sourceFormat;
 var source = new ol.source.Vector();

Working with Layers

[58]

File readers, similar to AJAX requests, are asynchronous. We have to register a
listener to the file reader's load event to reliably get all of the fetched data:

The easiest way to get access to files is using an input element with a
file type. The element has multiple file supports; hence, we have to
grab the first element from its file array.

 fr.onload = function (evt) {
 var vectorData = evt.target.result;
 switch (form.format.value) {
 case 'geojson':
 sourceFormat = new ol.format.GeoJSON();
 break;
 case 'topojson':
 sourceFormat = new ol.format.TopoJSON();
 break;
 case 'kml':
 sourceFormat = new ol.format.KML();
 break;
 case 'osm':
 sourceFormat = new ol.format.OSMXML();
 break;
 default:
 return false;
 }
 var dataProjection = form.projection.value || sourceFormat.
readProjection(vectorData) || currentProj;
 source.addFeatures(sourceFormat.readFeatures(vectorData, {
 dataProjection: dataProjection,
 featureProjection: currentProj
 }));
 };

When the data is available to be processed, we assign it to a variable. Based on the
user's choice, we construct a format object and then try to guess the data's projection.
Note that the order is important. First, we check whether the user has provided a
projection by enabling manual overriding. We start guessing whether the form's
projection field is empty. As all of the spatial formats have some way to store their
projection, we try to access it. If we have no luck, we default the projection to our
map's projection. Finally, we finish our method by telling the file reader to start
reading, and while it's working, we create the layer and add it to the map:

Chapter 3

[59]

TopoJSON is the new cutting-edge ASCII format to store vector data.
It reduces redundancy in the coordinates by mapping topological
connections, and it further decreases the file size by quantizing the
coordinates. If you are not obligated to use a specific format, always
consider using TopoJSON.

 fr.readAsText(file);
 var layer = new ol.layer.Vector({
 source: source,
 name: form.displayname.value,
 strategy: ol.loadingstrategy.bbox
 });
 this.addBufferIcon(layer);
 this.map.addLayer(layer);
 this.messages.textContent = 'Vector layer added
successfully.';
 return this;
};

You can try out our new functionality with the vector layers that are located in the
code appendix's res folder. All of the layers are in the EPSG:4326 projection.

Adding vector layers with a library
OpenLayers 3 offers similar capabilities out of the box. It is an interaction that
combines the File API and the Drag and Drop API. As it is a completely automatic
solution to add vector data from the hard drive, it needs different considerations. It
is more restrictive when it comes to projection handling. We can define the projection
in the constructor. If we don't, it tries to read the projection from the data itself. If it
cannot find one, the interaction defaults it to the map projection.

You cannot access the interaction's default projection. If you want
to change it, you have to remove the interaction from the map and
construct a new one with a different projection.

Working with Layers

[60]

Look at the file named ch03_draganddrop.js. We will extend our previous example
based on its content. First, replace ch03_fileapi.js with ch03_draganddrop.js in
the previous example's HTML file's head section. The only thing we have to do for
this interaction to work is add it to the map and define its behavior when a vector file
is added:

var dragAndDrop = new ol.interaction.DragAndDrop({
 formatConstructors: [
 ol.format.GeoJSON,
 ol.format.TopoJSON,
 ol.format.KML,
 ol.format.OSMXML
]
});
dragAndDrop.on('addfeatures', function (evt) {
 var source = new ol.source.Vector()
 var layer = new ol.layer.Vector({
 source: source,
 name: 'Drag&Drop Layer'
 });
 tree.addBufferIcon(layer);
 map.addLayer(layer);
 source.addFeatures(evt.features);
});
var map = new ol.Map({
 […]
 interactions: ol.interaction.defaults().extend([
 dragAndDrop
]),
 […]
});

There are two customizable features in the interaction. Passing an array of formats
is mandatory as the interaction will check whether the data can be parsed with an
instance of one of the formats. If it finds a match, it fires an addfeatures event with
the parsed features. Adding a projection parameter is optional, as noted previously.

As it does not process the features automatically, we have to register an event
listener to it. We split the process into parts so that the buffer icon will be displayed,
while the features are loaded into the source object.

Now, go ahead and test our newly implemented feature. Grab a vector file from the
res folder, and drop it on the map canvas.

Chapter 3

[61]

Removing layers dynamically
Now that we can add layers dynamically with our layer tree, it's time to add the
capability of removing layers. For this task, we create a button that's designated to
removing a selected layer, and add some logic to select a single layer in the layer
tree. You can see this example if you look for ch03_deletelayer.

Extending a constructor
First of all, we need to make the layers selectable, and we can do this by registering
further events to the layer elements in the constructor function. To make it simple
and clear, we create a utility method to add this event type to the layer element:

layerTree.prototype.addSelectEvent = function (node, isChild) {
 var _this = this;
 node.addEventListener('click', function (evt) {
 var targetNode = evt.target;
 if (isChild) {
 evt.stopPropagation();
 targetNode = targetNode.parentNode;
 }
 if (_this.selectedLayer) {
 _this.selectedLayer.classList.remove('active');
 }
 _this.selectedLayer = targetNode;
 targetNode.classList.add('active');
 });
 return node;
};

The function adds an event listener to the input element, which grabs a reference
of it and saves it to the object's selectedLayer property. It also grants some visual
feedback by appending an active class to the clicked layer element and removes it
from the previously selected layer.

There is one problem with this. If we click on the layer name, which is a child of the
layer element, we get a reference that doesn't make sense. To resolve this issue, our
method accepts an isChild Boolean. If the boolean is set to true, the method simply
grabs the reference of the clicked element's parent node and stops propagating to the
layer element itself. Next, we create rules for the active class and the remove button
in our CSS file:

.layertree-buttons .deletelayer {
 background-image: url(../../res/button_delete.png);
}

Working with Layers

[62]

.layercontainer .layer.active {
 border-color: orange;
}

Next, we extend our constructor by adding the remove button and selection logic:

var layerTree = function (options) {
 […]
 controlDiv.appendChild(this.createButton('deletelayer',
'Remove Layer', 'deletelayer'));
 […]
 this.selectedLayer = null;
 this.createRegistry = function (layer, buffer) {
 […]
 this.addSelectEvent(layerDiv);
 […]
 layerDiv.appendChild(this.addSelectEvent(layerSpan,
true));
 […]
 };
 […]
 this.map.getLayers().on('remove', function (evt) {
 this.removeRegistry(evt.element);
 }, this);
 […]
};

Don't forget about chaining methods! As we made addSelectEvent
chainable by returning the input node, we can directly append it to
the layer element in a single call.

We also register an event to the map's layer stack. If a layer gets deleted, we also
remove its element from the layer tree with the removeRegistry method:

When we register an event to one of the library's objects, we scope
it out of our object, as done in traditional event listeners. However,
in OpenLayers 3, the on method accepts an optional this as a third
argument; therefore, we don't have to grab a reference of it.

layerTree.prototype.removeRegistry = function (layer) {
 var layerDiv = document.getElementById(layer.get('id'));
 this.layerContainer.removeChild(layerDiv);
 return this;
};

Chapter 3

[63]

As you must have noticed, in the button creation, we used a different button type.
Remember when we used a switch statement in the button creation method? It's time
to extend it with the deletelayer case:

layerTree.prototype.createButton = function
(elemName, elemTitle, elemType) {
 […]
 case 'deletelayer':
 var _this = this;
 buttonElem.addEventListener('click', function () {
 if (_this.selectedLayer) {
 var layer = _this.getLayerById(_this.
selectedLayer.id);
 console.log(layer);
 _this.map.removeLayer(layer);
 _this.messages.textContent = 'Layer removed
successfully.';
 } else {
 _this.messages.textContent = 'No selected
layer to remove.';
 }
 });
 return buttonElem;
 […]
};

When we click on the remove button, it tries to decide which layer we would like to
remove. As it has the layer's id, it can easily search for it in the map's layer stack. To
make things even more transparent, we create a getLayerById method for this task:

layerTree.prototype.getLayerById = function (id) {
 var layers = this.map.getLayers().getArray();
 for (var i = 0; i < layers.length; i += 1) {
 if (layers[i].get('id') === id) {
 return layers[i];
 }
 }
 return false;
};

This method grabs a reference to the internal array of the layer stack and searches for
the one with the input ID. When it finds the layer, the method returns.

Working with Layers

[64]

One valid case for using the internal array of an OpenLayers 3 collection object
is this method used previously. As we can have many layers, we don't want
to iterate through all of them, just as many as necessary. With the collection's
forEach method, we can't use a return statement to save some time.

If you save and load the example, you can try out our new functionality:

You can easily implement simple logic to deselect layers by registering
a listener to the layer container, which clears the selected layer property.
If you do this, don't forget to stop the layer elements from propagating;
otherwise, the selected layers will be deselected instantly.

Changing layer attributes
We've almost reached the state of a fully operational layer tree. The next step in the
process is to add the capabilities of changing layer attributes. In this example, we will
make sure that we can change any layer's visibility, opacity, and its name from the
GUI. The example files are named ch03_attributes. As we are only adding further
parts to the layer element, we mostly have to extend our createRegistry method.

Styling active layers
In our concept, only active layers can be modified. With this consideration, only the
active layer element's options are exposed. The other layers will have the same nice,
uniform height that shows only the layer's name and the visibility checkbox. We can
easily implement this behavior with CSS:

.layercontainer .layer.active {
 border-color: orange;

Chapter 3

[65]

 min-height: 2em;
 height: auto;
}
.layer div {
 display: none;
}
.layer.active div {
 display: block;
}

In most browsers, the initial value works just fine when resetting
values to their defaults. However, Internet Explorer won't interpret
initial, and as all the browsers know auto, it is advisable to use it
for increased compatibility.

Extending the method
Now that the styling of the elements is complete, we can create logic to manage the
layer attributes. First, we add some listeners to the layer's name element so that we
can change it by double-clicking on it:

this.createRegistry = function (layer, buffer) {
 […]
 layerSpan.addEventListener('dblclick', function () {
 this.contentEditable = true;
 layerDiv.classList.remove('ol-unselectable');
 this.focus();
 });
 layerSpan.addEventListener('blur', function () {
 if (this.contentEditable) {
 this.contentEditable = false;
 layer.set('name', this.textContent);
 layerDiv.classList.add('ol-unselectable');
 layerDiv.title = this.textContent;
 this.scrollTo(0, 0);
 }
 });

Working with Layers

[66]

If we double-click on the layer name, our code changes its content to be editable,
makes it selectable (otherwise, the editable attribute just wouldn't work on some
browsers), and gives focus to it. If the element loses focus (the blur event), we
restore the element's original status and update everything with the layer's
new name. In the last step, we scroll to the start of the text as Firefox won't do it
automatically.

Making an element's content editable is an easy solution, but it is not
stable (add some line breaks to the layer name and see for yourself). As
a more stable solution, you can add a hidden text input to the element,
make it visible when it's double-clicked, bind it to the layer name and
layer object correctly, and make it disappear on losing focus.

Next, we create a checkbox that controls the visibility of the layer. We control the top
of it with CSS, and then bind it to the layer. We also gather its initial value from the
layer object (luckily, both of them operate with Booleans):

 var visibleBox = document.createElement('input');
 visibleBox.type = 'checkbox';
 visibleBox.className = 'visible';
 visibleBox.checked = layer.getVisible();
 visibleBox.addEventListener('change', function () {
 if (this.checked) {
 layer.setVisible(true);
 } else {
 layer.setVisible(false);
 }
 });
 layerDiv.appendChild(this.stopPropagationOnEvent
(visibleBox, 'click'));
 […]

With the layer object given to the method, we only have to toggle its visibility
based on the status of the checkbox. However, we are faced with a new issue. If we
click on the checkbox, we trigger the selection event, making our code select the
checkbox and messing up our entire logic. To prevent this behavior, we create a
stopPropagationOnEvent utility method, which has a quite meaningful name:

layerTree.prototype.stopPropagationOnEvent = function
(node, event) {
 node.addEventListener(event, function (evt) {
 evt.stopPropagation();
 });
 return node;
};

Chapter 3

[67]

In the last step, we return to the createRegistry method and define a slider, which
we use to control the layer's opacity. We create a div element to store future controls
and make sure that we can't deselect a layer by clicking on it. Next, we append
the slider to it. Its initial value depends on the layer's current opacity, and it has a
direct binding to the layer. Similar to the checkbox, we have to stop the slider from
propagating, too:

We defined our bindings to work in only one way (GUI map). If you
would like to have your layer tree updated in terms of the changes
made to the map object, you have to register some listeners there, too.

 var layerControls = document.createElement('div');
 this.addSelectEvent(layerControls, true);
 var opacityHandler = document.createElement('input');
 opacityHandler.type = 'range';
 opacityHandler.min = 0;
 opacityHandler.max = 1;
 opacityHandler.step = 0.1;
 opacityHandler.value = layer.getOpacity();
 opacityHandler.addEventListener('input', function () {
 layer.setOpacity(this.value);
 });
 opacityHandler.addEventListener('change', function () {
 layer.setOpacity(this.value);
 });
 layerControls.appendChild(this.stopPropagationOnEvent
(opacityHandler, 'click'));
 layerDiv.appendChild(layerControls);
 […]
};

You must be wondering why we have registered a listener to the
change event when we have one on the input event that fires
immediately when we move the slider. Well, because of Internet
Explorer, of course. Most major browsers fire an input event in this
case, while IE 11 fires a change event.

Working with Layers

[68]

If you save the code and load the example, you will see the attribute controls
working. If you want to map other attributes to the GUI, you can easily do so by
creating elements for them and appending them to layerControls:

Changing the layer order with the Drag
and Drop API
In the final step, we implement some logic to change the layer order. The code for
this example is named ch03_layerorder. As we want to have a convenient and full
GUI implementation, we use the HTML5 Drag and Drop API to achieve our task.

This API needs a simple draggable declaration on an element and a set of dragging-
related events. The browser needs to know what to do when an element is dragged;
when it is over, another element is declared draggable in a case where it is dropped
due to such an element. First, we prepare our layer elements by creating a CSS class
to give visual feedback when a layer is dragged over another one:

.layer.over {
 border-top: 3px solid black;
}

Chapter 3

[69]

Next, we extend our createRegistry function to make this process possible:

this.createRegistry = function (layer, buffer) {
 […]
 var _this = this;
 layerDiv.draggable = true;
 layerDiv.addEventListener('dragstart', function (evt) {
 evt.dataTransfer.effectAllowed = 'move';
 evt.dataTransfer.setData('Text', this.id);
 });
 layerDiv.addEventListener('dragenter', function (evt) {
 this.classList.add('over');
 });
 layerDiv.addEventListener('dragleave', function (evt) {
 this.classList.remove('over');
 });
 layerDiv.addEventListener('dragover', function (evt) {
 evt.preventDefault();
 evt.dataTransfer.dropEffect = 'move';
 });

The events that are associated with the Drag and Drop API may need some
explanation. The first event is fired when we drag the element. All other events fire
when the element acts as a target. Note that only those elements that also bear the
draggable attribute are recognized as target elements.

As the main concept behind the API is pure data transfer with the help of DOM
elements, we need to define the data we would like to transfer in the dragstart
event. As we don't have to deal with data from other sources, the simplest approach
for this is to send the element's id as a string. We also notify the browser that we will
move the element; therefore, it can assign a move cursor to the dragging process.

We defined our type of transferred data as Text, unlike the general
text/plain type definition. Can you guess why? Yes, I can hear you
mumbling Internet Explorer, and you are totally right!

Working with Layers

[70]

The dragenter and dragleave events are quite unequivocal ones. If we drag over a
possible target, it will have a wider top border, while if we drag out of it, it returns
to its normal state. There is some magic behind the dragover event, though. It has
the default behavior of canceling the drop; thus, we have to prevent it. We also have
to state that we would like to do this in a completely valid operation, which is in the
list of allowed effects. Most of the magic is due to the drop event, though, where we
change the order of the layers:

 layerDiv.addEventListener('drop', function (evt) {
 evt.preventDefault();
 this.classList.remove('over');
 var sourceLayerDiv = document.getElementById(evt.dataTransfer.
getData('Text'));
 if (sourceLayerDiv !== this) {
 _this.layerContainer.removeChild(sourceLayerDiv);
 _this.layerContainer.insertBefore(sourceLayerDiv,
this);
 var htmlArray =
[].slice.call(_this.layerContainer.children);
 var index = htmlArray.length -
htmlArray.indexOf(sourceLayerDiv) - 1;
 var sourceLayer =
_this.getLayerById(sourceLayerDiv.id);
 var layers = _this.map.getLayers().getArray();
 layers.splice(layers.indexOf(sourceLayer), 1);
 layers.splice(index, 0, sourceLayer);
 _this.map.render();
 }
 });

It also has a nasty default behavior in some browsers, which is to redirect based on
the given information in the dataTransfer object; therefore, our first task is defusing
the bomb. Now we can go on and grab a reference to the dragged element based on
id. If the source and its target elements are not the same, we can talk about a valid
order change and go on with our logic.

First, we insert the dragged element before the target (that is why we have
highlighted the target's top border to indicate the destination). Then, we calculate the
layer's position in the layer stack from the array of layer elements. As the layer stack
has an inverse order and starts with 0, we use the preceding formula.

Chapter 3

[71]

Querying the child elements of a node returns an HTML collection, not an
array. To check the index of a given element in the collection, though, we
need the indexOf method, which is exclusive to arrays. The JavaScript
array object's slice method is perfect to convert array-like objects to
arrays when called without any arguments. The full call would have been
Array.prototype.slice.call, but instead, we used a shortcut.

Finally, we grab a reference to the map's layer collection's internal array, cut it out
from its original position, and insert it into its a new position. We also have to call a
rendering frame as performing operations on the internal array of an ol.Collection
object does not fire any events.

This is the other valid case for using a collection's array instead of the
collection's methods. As using the methods would fire a remove and an
add event, the layer tree would recreate the layer registry on the top of
the stack, crashing our logic.

Now, we only have to solve one final problem. As the elements can be dragged, we
can't change the opacity of the layers with the slider because we would drag the
entire element. We can solve this by registering two events to the slider. One of them
disables dragging when we keep our mouse button on the slider, while the other one
reactivates it when we release our mouse button:

 opacityHandler.addEventListener('mousedown', function () {
 layerDiv.draggable = false;
 });
 opacityHandler.addEventListener('mouseup', function () {
 layerDiv.draggable = true;
 });

The code we've just created is operational but far from perfect. For
example, it has a weakness of not letting you place a layer at the
bottom of the stack. You can fix this by adding an empty dummy
layer element to the bottom of the stack and defining every drag
event on it except for dragstart.

Working with Layers

[72]

If you save the code and look it up in your favorite browser, you can try out our
dragging mechanism:

Clearing the message bar
In this very last example, called ch03_clearmessages, we make a mechanism to
clear the actual message in the message bar after 10 seconds. For some applications,
this is an absolutely useless feature, but for others, especially those with a less
frequent notification output, this can come in handy. One way to achieve this is by
manually removing the actual message after 10 seconds every time we create an
output. However, there must be a more optimal and convenient way to do this. As
we know that we cannot listen to change events on DOM elements without values
and text contents are special DOM nodes, we will use the Mutation Observer API.

To achieve our new goal, we extend our layerTree constructor function:

var layerTree = function (options) {
 […]
 var observer = new MutationObserver(function (mutations) {
 if (mutations[0].target.textContent) {
 var oldText = mutations[0].target.textContent;
 var timeoutFunction = function () {
 if (oldText !== mutations[0].target.textContent) {
 oldText = mutations[0].target.textContent;
 setTimeout(timeoutFunction, 10000);
 } else {
 oldText = '';
 mutations[0].target.textContent = '';
 }
 };
 setTimeout(timeoutFunction, 10000);
 }

Chapter 3

[73]

 });
 observer.observe(this.messages, {childList: true});
 […]
};

Mutation Observer can notify us about a variety of changes in the observed DOM
element and its children; however, it cannot track the changes in a text node. If we
observe the changes in our messages element's childList, it will notify us about
adding a text node or removing one (changing textContent to an empty string).

We use a recursive method to track the changes that are not observed by our
observer. As we nonrecursively observe the message bar, every possible mutation
event (even if someone mocks our application) will have the same target: the
message bar. If we have a valid message, we store it in a variable, called oldText,
and create a recursive function. This function compares the current message in the
message bar with our stored message after 10 seconds. If it is the same, the function
clears the message bar. If it is not, the function updates the variable and calls itself
again after 10 seconds.

This method is not very precise as it does not count the 10 seconds from
the change of the text message but from the last check. However, for this
purpose, it is completely sufficient.

Summary
Congratulations! You just created a GUI that is able to modify the layer stack in
several ways. In this chapter we learned how to create a simple but fully operational
layer tree. We also gained some valuable insight into JavaScript. You might have
been familiar with most of the concepts discussed in this chapter. Or, this chapter
might have taught you lots of new things. If this is the case, take some rest. You are
on your way to not only mastering OpenLayers 3 but also becoming a great frontend
developer.

We went through a small subset of the valid compatibility issues with Internet
Explorer. It has been developed in its own way for quite a long time, causing quite
a lot nuisance for frontend developers. However, most of these problems do not
persist in Microsoft Edge.

In the next chapter, we will discuss various vector-data-based concepts. We will
take a look at how we can manage vector data effectively by validating attributes,
creating input forms, constraining feature types, or creating thematic layers. Let's
vectorize our maps and learn how to get the most out of them!

[75]

Using Vector Data
When we work with vector sources, we basically have to deal with two types of data:
geometry and attributes. The geometry part is responsible for storing the position of
our shapes in one of the projections. We make spatial (topological) analysis with the
geometries of our data.

Attribute data is responsible for storing the related information for every feature. It
is also used for various analysis. Furthermore, it is utterly important when it comes
to querying or styling. These are considered as basic or core capabilities in GIS
software, although modern web mapping libraries tend to lack in effective attribute
management. This is the reason why we will mainly focus on attribute data.

In this chapter, we will cover the following topics:

• Object-oriented attribute management
• Relational considerations
• Creating thematic layers dynamically
• Saving spatial data to our server
• Modifying geometries in place

Using Vector Data

[76]

Before getting started
As we will mainly focus on attribute management in this chapter, we will need a
vector layer with lots of attributes. I have prepared such a layer to work with. It can
be located in the res folder of the code annex, and its name is world_countries.
geojson. Before we make some progress, let's change our default vector layer from
the capitals of the world to this one:

var map = new ol.Map({
 […]
 new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_countries.geojson',
 }),
 name: 'World Countries'
 })
],
 […]
});

Accessing attributes
In the first example (ch04_getattribute), we will learn how to access attribute
data stored in the features and communicate them to the user. We will use a very
particular feature of OpenLayers 3: the overlay. As a first step, we will create some
simple rules to be applied on our overlays:

.popup {
 border: 1px solid grey;
 background-color: rgba(255,255,255,1);
 border-radius: .5em;
}

Overlays are geographically bounded HTML elements, which scale with
the current resolution. They are stored separately from layers and other
elements of the library, allowing us to have full control over them. As
they are not parts of the canvas, we can easily style them with CSS.

Chapter 4

[77]

Writing the code
For this task, we simply register a click event to our map, querying the underlying
vector layers:

map.on('click', function (evt) {
 var pixel = evt.pixel;
 var coord = evt.coordinate;
 var attributeDiv = document.createElement('div');
 attributeDiv.className = 'popup';
 this.getOverlays().clear();

Firstly, we store the pointer's pixel and map coordinate value; then, we create
a div element to store our attributes. Next, we clear out the existing overlays,
implementing a lazy cancel effect. If the user opens a new overlay, the previous one
disappears:

 this.forEachFeatureAtPixel(pixel, function (feature, layer) {
 var attributes = feature.getProperties();
 for (var i in attributes) {
 if (typeof attributes[i] !== 'object') {
 var attributeSpan = document.createElement('span');
 attributeSpan.textContent = i + ': ' + attributes[i];
 attributeDiv.appendChild(attributeSpan);
 attributeDiv.appendChild(document.
createElement('br'));
 }
 }
 if (attributeDiv.children.length > 0) {
 this.addOverlay(new ol.Overlay({
 element: attributeDiv,
 position: coord
 }));
 }
 }, map, function (layerCandidate) {
 if (this.selectedLayer !== null && layerCandidate.get('id')
=== this.selectedLayer.id) {
 return true;
 }
 return false;
 }, tree);
});

Using Vector Data

[78]

The geometry of a feature is stored as a property; therefore, the
getProperties method returns it. It can also return style objects
related to a given feature. To avoid falsely mapping out these objects,
you can type check every attribute if it is a primitive value with the
JavaScript's typeof operator.

Next, we use the map's forEachFeatureAtPixel method to query the vector layers
under a given pixel. The method is not an easy one; it requires five parameters from
which two are functions. In order to have a better understanding in the method, you
can set some break points in the method using the developer tools of your browser.

The method's syntax is forEachFeatureAtPixel(pixel,
callback, this for callback, layer filter, this for
layer filter). It calls the layer filter function on all visible layers.
If the filter function returns true, it queries the layer for features at the
given pixel. Finally, it returns all the matched features and applies the
callback function on them one by one.

In our callback function, we query the feature's attributes. Next, we iterate through
its attributes object and append the attributes to our container element. If we have
at least one attribute in our container in the end, we display it as an overlay. For the
callback function, we specify this as the map object.

To iterate through plain objects, which have only properties inside, you
can always use the in keyword with the for iterator, making your
code simpler.

Next, we create our layer filter. As we only want to get features from the selected
layer in the layer tree, we simply query every layer candidate against the layer tree's
selectedLayer property. To make things more simple, we specify our layer tree
object as the function's context. If you save the code and load the example, you can
query features for their attributes. Don't forget to select the vector layer first:

Chapter 4

[79]

The only drawback of this method is that you can select multiple features if they are
under the same pixel. How many features can you select at once?

Using Vector Data

[80]

Setting attributes
As you must have wondered, setting attributes requires much more consideration than
simply mapping them to an element. In this example, called ch04_setattributes,
we will create a form with the existing attributes. In the form, the user will be able to
change the attribute values, add new ones to the feature, and remove them. We will
extend the previous example to achieve our goal.

Styling the form
Our form can have multiple possible layouts. A row with attributes will surely
contain the attribute name, the attribute value, and a remove button. However,
depending on the attribute's state, the name can be a span or a text input element.
Besides the rows, the form will have the add and save buttons. As we will create
a new div element for every row, we can create some simple CSS logic for these
different cases:

.popup span {
 display: inline-block;
 width: 5%;
}
.popup span:first-child {
 float: left;
 width: 40%;
}
.popup input[type=text] {
 width: 50%;
 box-sizing: border-box;
}
.popup input[type=text]:first-child {
 width: 35%;
 box-sizing: border-box;
}
.popup input[type=button], .popup input[type=submit] {
 width: 10%;
 float: right;
 […]
}
.popup .delete {
 background-image: url(../../res/button_delete.png);
}
.popup .save {
 background-image: url(../../res/button_save.png);
}

Chapter 4

[81]

You can select elements in CSS based on their attributes. You have to
provide the attribute name and the value in KVP format in brackets
after the element definition.

Writing the code
Firstly, unlike the previous example, we create a form element. Basically, as we
create the possibility to rewrite and append attributes, we take advantage of the form
element's submitting capability. We also dedicate a function to build rows based on
some arguments:

map.on('click', function (evt) {
 […]
 var attributeForm = document.createElement('form');
 […]
 var deletedAttributes = [];
 var firstFeature = true;
 function createRow (attributeName, attributeValue, isNew) {
 var rowElem = document.createElement('div');
 if (isNew) {
 var nameInput = document.createElement('input');
 nameInput.type = 'text';
 rowElem.appendChild(nameInput);
 }
 var attributeSpan = document.createElement('span');
 attributeSpan.textContent = isNew ? ': ' : attributeName +
': ';
 rowElem.appendChild(attributeSpan);
 var attributeInput = document.createElement('input');
 attributeInput.name = attributeName;
 attributeInput.type = 'text';
 attributeInput.value = attributeValue;
 rowElem.appendChild(attributeInput);
 var removeButton = document.createElement('input');
 removeButton.type = 'button';
 removeButton.className = 'delete';
 removeButton.addEventListener('click', function () {
 rowElem.parentNode.removeChild(rowElem);
 deletedAttributes.push(attributeName);
 });
 rowElem.appendChild(removeButton);
 return rowElem;
 }

Using Vector Data

[82]

We store the deleted attribute names, so we can remove them from the feature on
form submission. We use a firstFeature Boolean variable for a trick to limit the
queried features to the first one in the given pixel. The createRow function creates
a row based on the attribute's name and value. If it has to create an empty row, it
creates a text input for the attribute's name, too.

Next, we modify our forEachFeatureAtPixel method's callback function. Firstly,
we create the rows based on the feature's attributes and append the add and save
buttons to the end of the element:

 this.forEachFeatureAtPixel(pixel, function (feature, layer) {
 if (firstFeature) {
 var attributes = feature.getProperties();
 for (var i in attributes) {
 if (typeof attributes[i] !== 'object') {
 attributeForm.appendChild(createRow
(i, attributes[i]));
 }
 }
 if (attributeForm.children.length > 0) {
 var addAttribute = document.createElement('input');
 addAttribute.type = 'button';
 addAttribute.value = '+';
 addAttribute.addEventListener('click', function ()
{
 attributeForm.insertBefore(createRow
('', '', true), this);
 });
 attributeForm.appendChild(addAttribute);
 var saveAttributes = document.createElement('input');
 saveAttributes.type = 'submit';
 saveAttributes.value = '';
 saveAttributes.className = 'save';

If the user clicks on the add button, we can simply create a new row with two empty
strings and insert the new row before the buttons. This way, the new attributes'
elements will be nameless, which is required for the next part of our logic. As the
final step, we add a submit event listener to the form and close our function:

 attributeForm.addEventListener('submit', function
(evt) {
 evt.preventDefault();
 var attributeList = {};
 var inputList = [].slice.call(this.querySelectorAl
l('input[type=text]'));

Chapter 4

[83]

 while (inputList.length > 0 && inputList[0].name
!== '') {
 attributeList[inputList[0].name] =
inputList[0].value;
 inputList.splice(0,1);
 }
 for (i = 0; i < inputList.length; i += 2) {
 if (inputList[i].value !== '') {
 attributeList[inputList[i].value] =
inputList[i + 1].value;
 }
 }
 feature.setProperties(attributeList);
 for (i = 0; i < deletedAttributes.length; i += 1) {
 feature.unset(deletedAttributes[i]);
 }
 map.getOverlays().clear();
 });
 attributeForm.appendChild(saveAttributes);
 this.addOverlay(new ol.Overlay({
 element: attributeForm,
 position: coord
 }));
 firstFeature = false;
 }
 }
 }

You can query any element's children with a crafted CSS selector and
JavaScript's querySelector or querySelectorAll methods. The
returned element(s) will be the first matching the selector or an array
in order, respectively.

On form submission, we grab all the text inputs from the form. We convert them to a
regular array and create an attribute object based on some regularities. As we get an
ordered array, we first check all the named inputs. If there are no named inputs left,
we clearly have only new attributes in the array that come in pairs: one for the name
and one for the value. If we are at the end of the list, we can move on and remove
the unwanted attributes with OpenLayers 3's unset method. Finally, we set the
firstFeature variable to false, ensuring that the function won't check any further
features.

Using Vector Data

[84]

If you save the example and load it up, you will see the new attribute management
interface at work:

Feeling the power of modifying attributes as you like? This is one of the perks
of object-oriented data management. As most of the ASCII formats used by web
mapping libraries store their data as independent objects, and JavaScript is a
purely object-oriented language, supporting this schema is a necessity in a WebGIS
application.

Validating attributes
Object-oriented databases lack one very important thing that relational databases
have: consistency. As consistent data handling and relational database support is a
very important consideration in GIS software (at least to support a server-side spatial
database), we need to implement some restrictions in our data management system.
In this example, called ch04_validation, we will extend our application with typed
attributes and validation.

One possible solution for easy RDBMS support is using the Web SQL
Database API. However, this API is deprecated and not supported by
any of the Firefox and Microsoft browsers. In supported browsers, it
uses an SQLite backend.

Chapter 4

[85]

Adjusting the styles
As we are using a form for attribute management, we can harness its validating
capability as we use typed attributes. For numeric fields, we will use a number
input, which does not process strings. In non-Microsoft browsers, numeric fields also
prevent us from submitting the form if it detects a string in such an input. As a first
step, we modify our CSS to extend our rules to numeric inputs, too:

.popup input[type=text], .popup input[type=number] {
 width: 60%;
 box-sizing: border-box;
}

Building headers
An easy way to store the types associated with the attributes is using headers like
relational databases do. In our implementation, headers are objects stored in the
layer object that contain the attribute names as keys and the types as values. For
added convenience, we extend the OpenLayers 3 vector layer with a header builder
method outside the init function:

ol.layer.Vector.prototype.buildHeaders = function () {
 var headers = this.get('headers') || {};
 var features = this.getSource().getFeatures();
 for (var i = 0; i < features.length; i += 1) {
 var attributes = features[i].getProperties();
 for (var j in attributes) {
 if (typeof attributes[j] !== 'object' && !(j in headers))
{
 headers[j] = 'string';
 }
 }
 }
 this.set('headers', headers);
 return this;
};

It simply grabs the headers property of the layer object, if it has one, and checks
every feature's attributes; if it finds a missing attribute from the header object,
it defaults the attribute's type to the string. This way, we have to provide every
numeric attribute at layer construction.

Using Vector Data

[86]

It would be more logical to store the headers in the source object.
However, unlike layer objects, source objects do not accept extra
properties at construction.

Writing the code
This is one of the rare cases when we head from a complicated to a more simple
example. As we manage our attributes at a higher level now, we cannot do local
changes to them.

To keep up the consistency of our data, we do not add or remove
attributes at a feature level. Instead, you can build an attribute table and
export those functions there.

In this step, we modify our click event on the map. We have to alter our createRow
function and the forEachFeatureAtPixel method's callback function:

map.on('click', function (evt) {
 […]
 function createRow (attributeName, attributeValue, type) {
 var rowElem = document.createElement('div');
 var attributeSpan = document.createElement('span');
 attributeSpan.textContent = attributeName + ': ';
 rowElem.appendChild(attributeSpan);
 var attributeInput = document.createElement('input');
 attributeInput.name = attributeName;
 attributeInput.type = 'text';
 if (type !== 'string') {
 attributeInput.type = 'number';
 attributeInput.step = (type === 'float') ? 1e-6 : 1;
 }
 attributeInput.value = attributeValue;
 rowElem.appendChild(attributeInput);
 return rowElem;
 }

In this rewritten function, we don't have to deal with new attributes. We only check
the type of the attribute that we have to create the row for. If it is not a string, we
create a numeric input element for it and check further. If it is a float, we set the
precision to six decimal places. If it is an integer, we set the step attribute to 1.

Chapter 4

[87]

You can create more complex attribute types with additional parameters.
For example, if you want to implement a byte type, you can set the
input's min parameter to 0, its max parameter to 255, and step to 1.

Next, we modify our main function to add validating capabilities:

 this.forEachFeatureAtPixel(pixel, function (feature, layer) {
 […]
 for (var i in attributes) {
 if (typeof attributes[i] !== 'object' && i in headers)
{
 attributeForm.appendChild(createRow(i,
attributes[i], headers[i]));
 }
 }
 […]
 attributeForm.addEventListener('submit', function
(evt) {
 evt.preventDefault();
 var attributeList = {};
 var inputList = [].slice.call(this.querySelectorAl
l('input[type=text], input[type=number]'));
 for (var i = 0; i < inputList.length; i += 1) {
 switch (headers[inputList[i].name]) {
 case 'string':
 attributeList[inputList[i].name] =
inputList[i].value.toString();
 break;
 case 'integer':
 attributeList[inputList[i].name] =
parseInt(inputList[i].value);
 break;
 case 'float':
 attributeList[inputList[i].name] =
parseFloat(inputList[i].value);
 break;
 }
 }
 […]
});

Using Vector Data

[88]

The first part of the modification only maps out attributes that are present in the
headers object of the layer. The second part is a lot more interesting. It collects all
the form elements that can represent an attribute in an array. Based on the type of
the attribute stored in the headers object, it parses the attribute accordingly. As
inputs propagate their values as strings, converting them to numbers is a necessity.
Converting them to text when we have to deal with a string type is just an extra layer
of defense. Finally, we add some extra parameters and an event listener to invoke
our new mechanism correctly:

var map = new ol.Map({
 […]
 new ol.layer.Vector({
 […]
 headers: {
 pop_est: 'integer',
 gdp_md_est: 'integer'
 }
 })
 […]
});
[…]
map.getLayers().item(1).getSource().on('change', function (evt) {
 if (this.getState() === 'ready') {
 map.getLayers().item(1).buildHeaders();
 }
});

As you can see, the event is just a hack for our logic to work. In a product,
it should be implemented into the layer tree's most appropriate section.
Furthermore, the manual initialization of the headers object is also
hacky; however, doing it right would expand the code far beyond the
scope of this book.

If you save the code and load it up, you will see our validating mechanism in action.
Note that the numeric input's UI widgets do not work in Microsoft browsers:

Chapter 4

[89]

Creating thematic layers
In this example, called ch04_thematic, we will create an automatic solution for
thematic mapping. It will include graduated and categorized symbology. To keep the
example as simple as possible, we will make some generally incorrect assumptions.
Firstly, we assume that we only have to style polygon layers. For graduated
symbology, we hard code the intervals to five and also the color ramp starting from
a beige tone and ending in a burgundy color. We will implement the whole code into
our layer tree.

Extending the layer tree
We create the required GUI options in the layer tree. Firstly, we check against the
origin of the layer. If it is a vector layer, we create an empty list and three buttons for
the different styling options. Then, we save the default style in the layer, as it will
enable us to restore the original styling. Finally, we register an event listener to the
layer object. If the headers are changed, we rebuild the attribute list in the layer tree:

this.createRegistry = function (layer, buffer) {
 […]
 if (layer instanceof ol.layer.Vector) {
 layerControls.appendChild(document.createElement('br'));

Using Vector Data

[90]

 var attributeOptions = document.createElement('select');
 layerControls.appendChild(this.stopPropagationOnEvent(attribut
eOptions, 'click'));
 layerControls.appendChild(document.createElement('br'));
 var defaultStyle = this.createButton('stylelayer', 'Default',
'stylelayer', layer);
 layerControls.appendChild(this.stopPropagationOnEvent(defaultS
tyle, 'click'));
 var graduatedStyle = this.createButton('stylelayer',
'Graduated', 'stylelayer', layer);
 layerControls.appendChild(this.stopPropagationOnEvent(graduate
dStyle, 'click'));
 var categorizedStyle = this.createButton('stylelayer',
'Categorized', 'stylelayer', layer);
 layerControls.appendChild(this.stopPropagationOnEvent(categori
zedStyle, 'click'));
 layer.set('style', layer.getStyle());
 layer.on('propertychange', function (evt) {
 if (evt.key === 'headers') {
 this.removeContent(attributeOptions);
 var headers = layer.get('headers');
 for (var i in headers) {
 attributeOptions.appendChild(this.
createOption(i));
 }
 }
 }, this);
 }
 […]

In prior versions of OpenLayers 3, there was an undocumented method
for firing custom events called dispatchEvent. From Version 3.8.0,
this feature is gone; therefore, you must listen to existing events instead
of creating new ones.

As we are building on the existing functionality, we extend our createButton
method to support styling buttons. For this, we need to pass the layer object to it,
obligating us to add a new argument to it:

layerTree.prototype.createButton = function (elemName, elemTitle,
elemType, layer) {
 […]
 case 'stylelayer':

Chapter 4

[91]

 var _this = this;
 buttonElem.textContent = elemTitle;
 if (elemTitle === 'Default') {
 buttonElem.addEventListener('click', function () {
 layer.setStyle(layer.get('style'));
 });
 } else {
 var styleFunction = elemTitle === 'Graduated' ? this.
styleGraduated : this.styleCategorized;
 buttonElem.addEventListener('click', function () {
 var attribute = buttonElem.parentNode.
querySelector('select').value;
 styleFunction.call(_this, layer, attribute);
 });
 }
 return buttonElem;
 […]
};

We shape our default styling button to its final form, restoring the default style
stored in the layer object. The other buttons invoke the appropriate styling method.
As we grab those methods out of their default context, we have to manually provide
them with the JavaScript's call method and the reference to our layer tree.

Extending the createButton method slowly leads to creating a
good object. Creating a method that has too much and too diverse a
functionality often leads to complicated, unmanageable code. Always
try to keep your methods clean and write quality code.

Creating choropleth maps
In this step, we need to calculate the color ramps for the classes first. We calculate a
linear transition between two arbitrary colors. To calculate the colors for the different
classes, we use an RGB color generator:

layerTree.prototype.graduatedColorFactory = function (classNum, rgb1,
rgb2) {
 var colors = [];
 var steps = classNum - 1;
 var redStep = (rgb2[0] - rgb1[0]) / steps;
 var greenStep = (rgb2[1] - rgb1[1]) / steps;
 var blueStep = (rgb2[2] - rgb1[2]) / steps;

Using Vector Data

[92]

 for (var i = 0; i < steps; i += 1) {
 var red = Math.ceil(rgb1[0] + redStep * i);
 var green = Math.ceil(rgb1[1] + greenStep * i);
 var blue = Math.ceil(rgb1[2] + blueStep * i);
 colors.push([red, green, blue, 1]);
 }
 colors.push([rgb2[0], rgb2[1], rgb2[2], 1]);
 return colors;
};

As we have colors for the first and the last class already, we only have to partition
the intervals of the color components to one part less than the number of classes we
need:

Next, we can start to write our styling function. Firstly, we calculate some statistics
based on the input attribute and generate a linear gradient accordingly:

layerTree.prototype.styleGraduated = function (layer, attribute) {
 if (layer.get('headers')[attribute] === 'string') {
 this.messages.textContent = 'A numeric column is required for
graduated symbology.';
 } else {
 var attributeArray = [];
 layer.getSource().forEachFeature(function (feat) {
 attributeArray.push(feat.get(attribute));
 });
 var max = Math.max.apply(null, attributeArray);
 var min = Math.min.apply(null, attributeArray);
 var step = (max - min) / 5;
 var colors = this.graduatedColorFactory(5, [254, 240,
217], [179, 0, 0]);

You can use JavaScript's apply method with its Math.min and
Math.max methods to calculate the minimum and the maximum
value of an array. The apply method calls a function with a context
and also an array of arguments.

Chapter 4

[93]

Finally, we build a style function based on the generated colors and calculated
intervals:

 layer.setStyle(function (feature, res) {
 var property = feature.get(attribute);
 var color = property < min + step * 1 ? colors[0] :
 property < min + step * 2 ? colors[1] :
 property < min + step * 3 ? colors[2] :
 property < min + step * 4 ? colors[3] : colors[4];
 var style = new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: [0, 0, 0, 1],
 width: 1
 }),
 fill: new ol.style.Fill({
 color: color
 })
 });
 return [style];
 });
 }
};

Remember our assumptions: we can only style polygons with this method with five
intervals and a predefined start and end color. In order to make a general styling
method, you have to make a lot of checks and validations. If you test this part of the
application, you can create choropleth maps with the numeric attributes:

Using Vector Data

[94]

The simple equal interval symbology described above shows
representative results only with data that has a nearly normal
distribution. For a decent GIS software, more advanced functions
are needed for graduated symbology.

Creating categorized maps
For a categorized symbology, we only need to collect the different attribute values
from the features and assign random colors to them. For this purpose, we use a
random color generator function:

layerTree.prototype.randomHexColor = function() {
 return '#' + Math.floor(Math.random() * 16777215).toString(16);
};

This simple method can work because the Math.random method returns
a floating point number between 0 and 1. The biggest hexadecimal value
for a color is 0xFFFFFF. Its decimal value is 16777215. Finally, the
Number.prototype.toString method accepts a radix argument to
support conversions between different numeral systems.

Next, we can collect the different attribute values and generate a random color for
each of them:

layerTree.prototype.styleCategorized = function (layer, attribute) {
 var attributeArray = [];
 var colorArray = [];
 var randomColor;
 layer.getSource().forEachFeature(function (feat) {
 var property = feat.get(attribute).toString();
 if (attributeArray.indexOf(property) === -1) {
 attributeArray.push(property);
 do {
 randomColor = this.randomHexColor();
 } while (colorArray.indexOf(randomColor) !== -1);
 colorArray.push(randomColor);
 }
 }, this);

Chapter 4

[95]

Our method builds two consequent arrays, where the indices of the attribute values
and the colors match. This way, we can easily check whether a newly generated color
already exists. If it does, the method just simply generates a new color and checks
again. Now that we have the attribute and color arrays, we can build the style
function:

 layer.setStyle(function (feature, res) {
 var index = attributeArray.indexOf(feature.get(attribute).
toString());
 var style = new ol.style.Style({
 stroke: new ol.style.Stroke({
 color: [0, 0, 0, 1],
 width: 1
 }),
 fill: new ol.style.Fill({
 color: colorArray[index]
 })
 });
 return [style];
 });
};

In the style function, we check every feature's corresponding attribute value against
the attribute array, and assign a color based on the returned index number. If you
save the code and load it up, you can test our new styling functionality. If you choose
the continent column for the categorized styling, you will get the following result:

Using Vector Data

[96]

Note that features from a KML source use internal styling (as KML data
can store styles); therefore, these styling functions won't work on them.

Saving vector data
In this book, we are concentrating on loading, mapping, and modifying spatial data
on the client-side. However, we should be able to send our modified data to our
server. Server-side applications are out of the scope of this book, though we cover
how to initialize a saving process. Note that this example, called ch04_save, will
produce errors as we don't have server-side support for receiving spatial data. Don't
worry about that; the client side part works perfectly fine.

If you would like to see the output of the last two examples, you can send
them to the console before or after the AJAX request with console.log.

Saving in arbitrary formats
OpenLayers 3 offers powerful parser objects that are not only capable of reading
strings representing vector data, but can also write features back to well-recognized
formats. We can easily send a GeoJSON file with the following code:

var geoJSONSerializer = new ol.format.GeoJSON();
var featString = geoJSONSerializer.writeFeatures(this.getFeatures());
var request = new XMLHttpRequest();
request.open('POST', 'myserver/myscript');
request.send(featString);

The GET methods have a limit in length, which depends on the
browser used and also on the server configuration. As vector data can
easily exceed this limit (generally at least 4,000 characters), using the
POST methods is recommended.

Chapter 4

[97]

Saving with WFS-T
Using a WFS-Transaction service usually requires less server-side configuration,
but more considerations on the client side. OpenLayers 3 can write WFS-T requests;
however, it is hard coded to support only Version 1.1.0. We can create a minimalistic
WFS-T request with the following code:

var WFSTSerializer = new ol.format.WFS();
var featObject = WFSTSerializer.writeTransaction(this.getFeatures(),
null, null, {
 featureType: 'ne:countries',
 featureNS: 'http://naturalearthdata.com',
 srsName: 'EPSG:3857'
});
var serializer = new XMLSerializer();
var featString = serializer.serializeToString(featObject);
var request = new XMLHttpRequest();
request.open('POST', 'myowsserver?SERVICE=WFS');
request.setRequestHeader('Content-Type', 'text/xml');
request.send(featString);

As WFS-T services can insert, update, and delete features with POST, the
writeTransaction method requires three arrays of features (insert, update, and
delete). It also needs some options regarding the GML schema the method has to
use. The method returns an XML node that needs to be serialized and then we can
send it to the server. We also have to notify the server; we send XML data in the
request body, by setting a Content-Type header.

As you will possibly use a third-party WFS implementation, always
test it before deployment. Possibly, nothing will go wrong with this
projection; however, GeoServer tends to swap the coordinates with the
projection EPSG:4326.

Using Vector Data

[98]

Modifying the geometry
Based on the reasons from the beginning of this chapter, our main focus is on
attribute management. However, we cannot get past the geometry part without
a word. In this example, called ch04_geometry, we pull out the swiss army knife
of modifying geometries in OpenLayers 3. As we made a note of issues with the
coordinate order in GeoServer, we swap the coordinates of a whole layer. Note that,
for now, we only modify the geometries internally. We will do some visual and GUI
modifications in the next chapter:

var modifiedFeatures = [];
var features = this.getFeatures();
for (var i = 0; i < features.length; i += 1) {
 var modifiedFeature = features[i].clone();
 modifiedFeature.getGeometry().applyTransform(function
(flatCoordinates, flatCoordinates2, stride) {
 for (var j = 0; j < flatCoordinates.length; j += stride) {
 var y = flatCoordinates[j];
 var x = flatCoordinates[j + 1];
 flatCoordinates[j] = x;
 flatCoordinates[j + 1] = y;
 }
 });
 modifiedFeatures.push(modifiedFeature);
}

With the geometry objects' applyTransform method, we can get a
reference to a feature's underlying flat coordinates and its layout in
a numeric format called stride. The flat coordinates are a simple
array with all the coordinates in bulk.

Firstly, we use stride to know how much further we have to step our iteration to
get to the next pair of coordinates. We clone the features, modify them in place, and
then save them in an array. The only thing left is writing a WFS-T request based on
the new features:

var WFSTSerializer = new ol.format.WFS();
var featObject = WFSTSerializer.writeTransaction(null,
modifiedFeatures, null, {
 featureType: 'ne:countries',
 featureNS: 'http://naturalearthdata.com',
 srsName: 'EPSG:4326'
});

Chapter 4

[99]

As GeoServer's coordinate swapping issue is well known, when updating existing
features with WFS-T in the projection EPSG:4326, we include the features in the
update array.

Summary
Congratulations! You have gained a very good control over your vector data. In
this chapter, we learned effective feature management. We modified attributes,
organized them in a different way, and even created thematic maps based on them.
We also learned a basic yet very powerful method to modify the features' geometries.

In the next chapter, we will learn how to create custom controls and interactions.
Among the different interactions, we will implement our attribute management
system in a proper way. In the end, we will create a complete editing toolbar.

[101]

Creating Responsive
Applications with Interactions

and Controls
Now that we are familiar with extending OpenLayers 3 classes and vector
management, we can go on and create some interactions and controls. These two
terms became distinct in the library, unlike its predecessor. In a nutshell, interactions
are special controls that involve a pointer and pointer events, while controls
are the traditional controls that are static in nature and can be mapped to a GUI
button or DOM element. This is not a bad thing, but it requires more architectural
considerations when we create an application. We need to create a structure that
can handle both of them in a nice, responsive GUI way.

In this chapter, we will cover the following topics:

• Creating a toolbar for control management
• Building custom controls and interactions
• Selecting, drawing, modifying, and removing features
• Measuring distances and areas on the map

Before getting started
In this chapter, we won't use any special APIs or libraries, we just play with
OpenLayers 3 and native JavaScript. However, this is the chapter where we will
use a feature that is not exported in the compiled library; therefore, we will need
the debug version of OpenLayers 3, called ol-debug.js. The debug version of the
library is in the same folder as the compiled version.

Creating Responsive Applications with Interactions and Controls

[102]

Basic considerations
As we would like to build a complete toolbar that can manage our controls and
interactions, we need to make some considerations first. In the next examples, we
will build a constructor function, which is similar to our layer tree. The constructed
object will take care of the management of its internal controls. If you have used
OpenLayers 2, you must be familiar with the panel control. Ours will be similar to it.

Right after this, we will create a general purpose control that has only one job:
mapping an interaction to a button correctly. As the interaction and control have
become distinct features, there is a gap between them, which we will fill. We will
reuse this general control for our various purposes, and build a rich application with
it, and various interactions assigned to it.

Building the toolbar
In the first example, called ch05_toolbar, we create the constructor function for our
management system and add some methods to it to add and remove controls. We
don't need any styling at this point. Firstly, we create the constructor:

var toolBar = function (options) {
 'use strict';
 if (!(this instanceof toolBar)) {
 throw new Error('toolBar must be constructed with the new
keyword.');
 } else if (typeof options === 'object' && options.map && options.
target && options.layertree) {
 if (!(options.map instanceof ol.Map)) {
 throw new Error('Please provide a valid OpenLayers 3
map object.');
 }
 this.map = options.map;
 this.toolbar = document.getElementById(options.target);
 this.layertree = options.layertree;
 this.controls = new ol.Collection();
 } else {
 throw new Error('Invalid parameter(s) provided.');
 }
};

Chapter 5

[103]

Similar to the layer tree, we use the use strict paradigm to avoid bad invokes. The
constructor takes an object with properties as an argument. The object must contain a
reference to our map, a target element, and a reference to our layer tree. If everything
is in place, we create an empty collection object in which we will store the controls
associated with the given instance of our toolbar. Next, we add an addControl
method to its prototype:

toolBar.prototype.addControl = function (control) {
 if (!(control instanceof ol.control.Control)) {
 throw new Error('Only controls can be added to the
toolbar.');
 }
 if (control.get('type') === 'toggle') {
 control.on('change:active', function () {
 if (control.get('active')) {
 this.controls.forEach(function (controlToDisable)
{
 if (controlToDisable.get('type') === 'toggle'
&& controlToDisable !== control) {
 controlToDisable.set('active', false);
 }
 });
 }
 }, this);
 }
 control.setTarget(this.toolbar);
 this.controls.push(control);
 this.map.addControl(control);
 return this;
};

The method checks whether a valid OpenLayers 3 control has been given to it. If
not, it simply returns a user-friendly error message. Next, it checks the type of the
control, which we have to set manually later. In our structure, only one control
can be active with a toggle type at a time. Every toggle control will get a listener
associated with it. If it gets activated, every other toggle control in the toolbar gets
deactivated (except the activated control). As a last step, we set the control's target
and add it to the toolbar's collection and the map as well.

You can only set a control's target before you add it to the map. After
that, the setTarget method won't change the control's current target.

Creating Responsive Applications with Interactions and Controls

[104]

Next, we extend our toolbar further with a removeControl method:

toolBar.prototype.removeControl = function (control) {
 this.controls.remove(control);
 this.map.removeControl(control);
 return this;
};

This very simple method removes the control from the toolbar and also from the
map. As every event is associated with the removed control, the library takes care of
cleaning up automatically.

As a last step, we remove the zoom control from the map's constructor in our init
function and add it to our toolbar instead:

var tools = new toolBar({
 map: map,
 target: 'toolbar',
 layertree: tree,
}).addControl(new ol.control.Zoom());

Now save the example and load it up in your browser. Do you see any changes?
No? This means, everything works fine. From now on, our own control management
system handles the zoom controls.

Note that, if you create a general purpose API with a similar
mechanism, you will synchronize the map's controls with the
toolbar. This way, you can prevent an inattentive developer breaking
the application by removing a toolbar control directly from the map.

Mapping interactions to controls
In this example, called ch05_select, we fill the gap between interactions and
controls, and create a simple feature selecting the control. As we need to inform
the user about the control's status, we create some CSS rules for active controls.
Activated controls will have a nice orange color, which won't change, if we hover
over them. We also extend the ol-unselectable class to our controls:

.layertree,.toolbar .ol-unselectable {
[…]
.toolbar .ol-control button.active {
 background-color: rgba(234,129,8,1);
}
.toolbar .ol-control button.active:hover {
 background-color: rgba(234,129,8,1);
}

Chapter 5

[105]

Creating the control
Next, we can go on and build a custom control that has only one job: managing the
underlying interaction. Firstly, we set up the control's properties and GUI elements
based on the supplied options:

ol.control.Interaction = function (opt_options) {
 var options = opt_options || {};
 var controlDiv = document.createElement('div');
 controlDiv.className = options.className || 'ol-unselectable
ol-control';
 var controlButton = document.createElement('button');
 controlButton.textContent = options.label || 'I';
 controlButton.title = options.tipLabel || 'Custom interaction';
 controlDiv.appendChild(controlButton);
 var _this = this;
 controlButton.addEventListener('click', function () {
 if (_this.get('interaction').getActive()) {
 _this.set('active', false);
 } else {
 _this.set('active', true);
 }
 });
 var interaction = options.interaction;

We create a standard OpenLayers 3 control button: a button element inside a div
element. We set up its style, title, and content; then, we add a listener to it. If we click
on it in an active status, we deactivate it and vice versa.

Interactions in OpenLayers 3 can be activated and deactivated by
default. This is not true for controls; therefore, we have to implement
it via giving the control an active property and registering listeners
to it.

Next, we call the original control constructor with our custom control setting it up.
This is one of the two key steps in extending a class in OpenLayers 3. Only after this
step, we can use the control's factory methods.

Creating Responsive Applications with Interactions and Controls

[106]

After we set up the control, we can set its properties. This is where we give it a
toggle type. We also store the associated interaction in the control and a function
that will remove the interaction from the map, if the control is removed:

 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
 this.setProperties({
 interaction: interaction,
 active: false,
 type: 'toggle',
 destroyFunction: function (evt) {
 if (evt.element === _this) {
 this.removeInteraction(_this.get('interaction'));
 }
 }
 });

Next, we close our control with a listener on its active property. If the control
is activated, we activate the interaction and add the active class to it's class list.
Finally, we copy the prototype chain of ol.control.Control to our control with
ol.inherits method. This is the second key step in extending an OpenLayers 3 class:

 this.on('change:active', function () {
 this.get('interaction').setActive(this.get('active'));
 if (this.get('active')) {
 controlButton.classList.add('active');
 } else {
 controlButton.classList.remove('active');
 }
 }, this);
};
ol.inherits(ol.control.Interaction, ol.control.Control);

The ol.inherits method is a simple reference to the Closure Library's
goog.inherits. It takes two constructor functions; let's call them A
and B. It simply copies the constructor B's prototype to the constructor
A's prototype.constructor property. This not only exposes the
constructor B's and all its parents' methods to the constructor A, but also
makes an A instance of B and all its parents. One constructor can only
have one inheritance with this method, it cannot be used as a mixin.

Chapter 5

[107]

Adding and removing the control
As our control has an underlying interaction, we have to make sure that it is
correctly added to the map on addition and removed on removal. For this purpose,
we already created a function that will act as an event listener on the map's control
collection. However, as we add an event listener to an object, which doesn't get
destroyed, we have to manually take care of unlistening on the removal of the
control, thus, cleaning up after ourselves:

ol.control.Interaction.prototype.setMap = function (map) {
 ol.control.Control.prototype.setMap.call(this, map);
 var interaction = this.get('interaction');
 if (map === null) {
 ol.Observable.unByKey(this.get('eventId'));
 } else if (map.getInteractions().getArray().indexOf(interaction)
=== -1) {
 map.addInteraction(interaction);
 interaction.setActive(false);
 this.set('eventId', map.getControls().on('remove',
this.get('destroyFunction'), map));
 }
};

Control objects have a setMap public method that can be overridden. This method
gets the map object, the control is added to, and takes care of every map-related
initialization. By calling the original method first, we can extend this functionality to
our own needs.

If the control is added to a map or removed from it, this method gets invoked
with the map object or a null value, respectively. This way, we can easily add the
underlying interaction to the map, if it hasn't been added yet. However, we will have
a hard time on the removal, as we don't have a reference to the map object then.

To overcome this problem, we register a listener to our map's control collection. If
the listener detects that our control has been removed, it removes the associated
interaction. If we save the key returned by the listener in a variable or a property
(eventId), we can call the ol.Observable.unByKey static function with the key to
remove the listener. This way, we do not need to have a reference to our map object.

Creating Responsive Applications with Interactions and Controls

[108]

Adding a selection control
Now that we have a fully operational custom control for mapping interactions
to control buttons, we can add a simple selection control to our map. We leave
everything on their default values and pass only an ol.interaction.Select
method to the constructor, which can select any feature from any vector layer
when it is clicked on:

tools.addControl(new ol.control.Interaction({
 interaction: new ol.interaction.Select()
}));

If you save the code and open it in your favorite browser, you will see our new
control in action:

Chapter 5

[109]

Building a set of feature selection
controls
Interactions in OpenLayers 3 are related to the view or vector layers. These interactions
related to vector data mostly have only this in common. Their working mechanism is
highly inconsistent, it depends on the type of the given interaction. This peculiarity
requires us to customize every interaction individually for our needs. In this example,
called ch05_select_complex, we will create three selection tools.

Styling the controls
Firstly, we create some styles for the control buttons. We will use some nice
background images to describe the controls. As we leave the text content of the
buttons empty, we have to vertically center the buttons, not just the container div
element. We also need to set some rules for the background images to render them
properly:

.toolbar .ol-control button {
[…]
 vertical-align: middle;
 background-size: 1em;
 background-repeat: no-repeat;
 background-position: 50%;
}
[…]
.toolbar .ol-singleselect button {
 background-image: url(../../res/button_select.png);
}
.toolbar .ol-multiselect button {
 background-image: url(../../res/button_multiselect.png);
}
.toolbar .ol-deselect button {
 background-image: url(../../res/button_deselect.png);
}

Creating Responsive Applications with Interactions and Controls

[110]

Creating the selection tools
To set up and manage the selection controls, we extend the toolbar with a method
that creates the required controls and adds them to the map. We will use one central
select interaction. This way, if we ever need to make operations on the current
selection, we only have to query a single interaction:

toolBar.prototype.addSelectControls = function () {
 var layertree = this.layertree;
 var selectInteraction = new ol.interaction.Select({
 layers: function (layer) {
 if (layertree.selectedLayer) {
 if (layer === layertree.getLayerById(layertree.
selectedLayer.id)) {
 return true;
 }
 }
 return false;
 }
 });
 var selectSingle = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Select feature',
 className: 'ol-singleselect ol-unselectable ol-control',
 interaction: selectInteraction
 });

Luckily, the select interaction accepts a filter function, with which we can narrow
down the candidate layers to the currently selected one. Next, we create another
custom control with a drag box interaction attached to it:

 var boxInteraction = new ol.interaction.DragBox();
 var selectMulti = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Select features with a box',
 className: 'ol-multiselect ol-unselectable ol-control',
 interaction: boxInteraction
 });

Chapter 5

[111]

Next, we assign an event to the drag box. When a box is drawn, we clear the selected
interaction's underlying feature collection, detect every feature intersecting the box in
the selected layer, and add them to the collection. Note that the selected interaction
doesn't have to be active to highlight selected features:

 boxInteraction.on('boxend', function (evt) {
 selectInteraction.getFeatures().clear();
 var extent = boxInteraction.getGeometry().getExtent();
 if (this.layertree.selectedLayer) {
 var source = this.layertree.getLayerById(this.layertree.
selectedLayer.id).getSource();
 if (source instanceof ol.source.Vector) {
 source.forEachFeatureIntersectingExtent(extent,
function (feature) {
 selectInteraction.getFeatures().push(feature);
 });
 }
 }
 }, this);

The ol.source.Vector class has two methods for hit detection. The
first one, forEachFeatureInExtent, compares the supplied extent
with every feature's extent. This is a very fast method, as OpenLayers
3 uses an R-Tree for spatial indexing, but often yields incorrect results.
The second one, forEachFeatureIntersectingExtent, compares
the supplied extent with every feature's geometry. It is slower, but also
more accurate.

Finally, we close our method by creating a third control to remove selections.
This control is plain simple, and cannot be toggled; thus, we build it as a custom
ol.control.Control. We also add the newly created controls to the toolbar:

 var controlDiv = document.createElement('div');
 controlDiv.className = 'ol-deselect ol-unselectable ol-control';
 var controlButton = document.createElement('button');
 controlButton.title = 'Remove selection(s)';
 controlDiv.appendChild(controlButton);
 controlButton.addEventListener('click', function () {
 selectInteraction.getFeatures().clear();
 });
 var deselectControl = new ol.control.Control({
 element: controlDiv
 });
 this.addControl(selectSingle)
 .addControl(selectMulti)
 .addControl(deselectControl);
 return this;
};

Creating Responsive Applications with Interactions and Controls

[112]

The only thing left to do is to call our new method in the init function:

var tools = new toolBar({
 map: map,
 target: 'toolbar',
 layertree: tree,
}).addControl(new ol.control.Zoom()).addSelectControls();

If you save the example and load it up, you can play around with our selecting
mechanism. Just don't forget to select the vector layer first:

Adding new vector layers
In this example, ch05_newvector, we take a little detour back to our layer tree
model. We have to make some inevitable enhancements to it before we can proceed
to our next goal. We are going to create an option to add new, typed vector layers.
We also need to create an event firing mechanism that can be used to detect changes
in the currently active layer.

Chapter 5

[113]

Creating the HTML and the CSS
As we extend our layer tree with a new layer addition option, we have to create the
required HTML form and CSS rule for it. Both of them are very simple. The rule only
contains the URL of the background image as usual:

.layertree-buttons .newvector {
 background-image: url(../../res/button_newvector.png);
}

The HTML form enables us to name the layer and choose a type for it. The type can
be one of the main vector types: point, line, or polygon. We also allow you to choose
a collection type: geometry collection. Later, we will restrict the drawing options
based on the layer's type:

<div id="newvector" class="toggleable" style="display: none;">
 <form id="newvector_form" class="addlayer">
 <p>New Vector layer</p>
 <table>
 <tr>
 <td>Display name:</td>
 <td><input name="displayname" type="text"></td>
 </tr>
 <tr>
 <td>Type:</td>
 <td><select name="type" required="required">
 <option value="point">Point</option>
 <option value="line">Line</option>
 <option value="polygon">Polygon</option>
 <option value="geomcollection">Geometry
Collection</option>
 </select></td>
 </tr>
 <tr>
 <td><input type="submit" value="Add layer"></td>
 <td><input type="button" value="Cancel"
onclick="this.form.parentNode.style.display = 'none'"></td>
 </tr>
 </table>
 </form>
</div>

Creating Responsive Applications with Interactions and Controls

[114]

Extending the layer tree
Now that we have a form for the new vector layer, we can extend the layer tree with
the necessary parts. Firstly, we extend the constructor function with a new button
and the empty ol.Observable object:

var layerTree = function (options) {
 […]
 controlDiv.appendChild(this.createButton('newvector', 'New
Vector Layer', 'addlayer'));
 […]
 this.selectEventEmitter = new ol.Observable();
 […]
 this.map.getLayers().on('remove', function (evt) {
 this.removeRegistry(evt.element);
 this.selectEventEmitter.changed();
 […]
};

The reason behind our choice of event object is that ol.Observable is the most
lightweight class that can create events, and be listened to. Practically, this is the
only task of this class. We can immediately find a place to fire a change event in our
constructor—when we remove the selected layer. Next, we find the other occurrence
where firing the change event is appropriate:

layerTree.prototype.addSelectEvent = function (node, isChild) {
 var _this = this;
 node.addEventListener('click', function (evt) {
 […]
 _this.selectEventEmitter.changed();
 […]
};

Next, we create the method responsible for reading the form and add the vector layer
to the map accordingly:

layerTree.prototype.newVectorLayer = function (form) {
 var type = form.type.value;
 if (type !== 'point' && type !== 'line' && type !== 'polygon'
&& type !== 'geomcollection') {
 this.messages.textContent = 'Unrecognized layer type.';
 return false;
 }
 var layer = new ol.layer.Vector({
 source: new ol.source.Vector(),

Chapter 5

[115]

 name: form.displayname.value || 'Unnamed Layer',
 type: type
 });
 this.addBufferIcon(layer);
 this.map.addLayer(layer);
 layer.getSource().changed();
 this.messages.textContent = 'New vector layer created
successfully.';
 return this;
};

Note that, if we try to manually alter the type of the layer and provide a custom
value, it will get stuck on the first check. Also, as vector layers generally get a
buffering icon from the layer tree and our layer's source is empty, we must manually
trigger a change event on it for the buffering icon to disappear. The order matters as
we have to trigger the change event after the layer's div element has been created.

Finally, we add the required event listener for the form, as usual, and see the results:

document.getElementById('newvector_form').addEventListener('submit',
function (evt) {
 evt.preventDefault();
 tree.newVectorLayer(this);
 this.parentNode.style.display = 'none';
});

Creating Responsive Applications with Interactions and Controls

[116]

Building a set of drawing tools
In this example, called ch05_draw, we extend our toolbar with a method that creates
a set of drawing tools. We store these tools in a new collection, as we would like to
enable them, only if a vector layer is selected. As they are placed in a collection, we
can easily iterate through them. Firstly, we create some new rules in our CSS file for
the buttons and the disabled controls:

.toolbar .ol-control button:disabled {
 background-color: rgba(0,0,0,.2);
}
.toolbar .ol-control button:disabled:hover {
 background-color: rgba(0,0,0,.2);
}
.toolbar .ol-addpoint button {
 background-image: url(../../res/button_addpoint.png);
}
.toolbar .ol-addline button {
 background-image: url(../../res/button_addline.png);
}
.toolbar .ol-addpolygon button {
 background-image: url(../../res/button_addpolygon.png);
}

Writing the method
Before starting our method, we extend our custom interaction control with the
disabling capability. It is a very simple method that sets the disabled property
of the button element, if the argument is a Boolean literal:

ol.control.Interaction = function (opt_options) {
 […]
 this.setDisabled = function (bool) {
 if (typeof bool === 'boolean') {
 controlButton.disabled = bool;
 return this;
 }
 };
 […]
};

Chapter 5

[117]

Next, we can create our new method that constructs the three necessary drawing
controls and adds them to the collection of editing controls:

By default, ol.interaction.Draw finishes the current sketch if
you click within the 12 pixels radius of one of the sketch's vertices. For
precise digitizing, this behavior is unacceptable; therefore, we set the
snapTolerance parameter to 1. This way, we can only finish our sketch
with a double-click on the last vertex, but we also help the library to identify
a double-click, especially when our snapping control will be active.

toolBar.prototype.addEditingToolBar = function () {
 var layertree = this.layertree;
 this.editingControls = new ol.Collection();
 var drawPoint = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Add points',
 className: 'ol-addpoint ol-unselectable ol-control',
 interaction: this.handleEvents(new ol.interaction.Draw({
 type: 'Point',
 snapTolerance: 1
 }), 'point')
 }).setDisabled(true);
 this.editingControls.push(drawPoint);
 var drawLine = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Add lines',
 className: 'ol-addline ol-unselectable ol-control',
 interaction: this.handleEvents(new ol.interaction.Draw({
 type: 'LineString',
 snapTolerance: 1
 }), 'line')
 }).setDisabled(true);
 this.editingControls.push(drawLine);
 var drawPolygon = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Add polygons',
 className: 'ol-addpolygon ol-unselectable ol-control',
 interaction: this.handleEvents(new ol.interaction.Draw({
 type: 'Polygon',
 snapTolerance: 1
 }), 'polygon')
 }).setDisabled(true);
 this.editingControls.push(drawPolygon);

Creating Responsive Applications with Interactions and Controls

[118]

We can assign a layer filter in the select interaction, which is considered
an easy case. However, the draw interactions require a source object to
work with, which cannot be changed after instantiation. To tackle this
problem, we do not specify a source in the interactions, but we will add
the features to the appropriate source manually via event listeners.

Note that, later, we will dedicate a method to register listeners on the drawing
interactions called handleEvents. Don't worry about that now, we will discuss it
right after we finish this method.

We disable every editing control by default as, in the application's default state, none
of the layers are selected. Next, we close our method by registering an event on the
layer tree's selectEventEmitter object and add the controls to the toolbar:

 layertree.selectEventEmitter.on('change', function () {
 var layer = layertree.getLayerById(layertree.selectedLayer.
id);
 if (layer instanceof ol.layer.Vector) {
 this.editingControls.forEach(function (control) {
 control.setDisabled(false);
 });
 var layerType = layer.get('type');
 if (layerType !== 'point' && layerType !==
'geomcollection') drawPoint.setDisabled(true).set('active',
false);
 if (layerType !== 'line' && layerType !==
'geomcollection') drawLine.setDisabled(true).set('active', false);
 if (layerType !== 'polygon' && layerType !==
'geomcollection') drawPolygon.setDisabled(true).set
('active', false);
 } else {
 this.editingControls.forEach(function (control) {
 control.set('active', false);
 control.setDisabled(true);
 });
 }
 }, this);
 this.addControl(drawPoint).addControl(drawLine).addControl
(drawPolygon);
 return this;
};

Chapter 5

[119]

If the selected layer changes, we check the new selection. We follow two different
logics based on the layer's type. If the layer has a vector type, we use a permissive
logic. We enable every editing control, check for the type of the layer, and disable the
inappropriate drawing controls. We also deactivate them; therefore, they do not get
stuck if we change the selected layer during an editing session. If the layer is not a
vector, we use a restrictive logic and disable every editing control.

We have called the layer tree's getLayerById method several times
in our code. If you write production code, it sounds like a reasonable
optimization to store a reference to the currently selected layer in the
layer tree besides its DOM element.

Now, it's time to define a method to register events to the draw interactions. There
is a mandatory event on finishing a sketch where we add the feature to the selected
vector layer's source, if there is a vector layer selected. However, it is advisable to
do a check when we start drawing. Disabling controls can be considered as a good
visual feedback for users, as to whether they can use a given drawing tool or not. On
the other hand, the disabled property of a DOM element can be overridden from
the browser; thus, we should make the drawing process completely foolproof. We
start with a listener that implements this extra security consideration:

toolBar.prototype.handleEvents = function (interaction, type) {
 if (type !== 'point') {
 interaction.on('drawstart', function (evt) {
 var error = false;
 if (this.layertree.selectedLayer) {
 var selectedLayer = this.layertree.getLayerById(this.
layertree.selectedLayer.id);
 var layerType = selectedLayer.get('type');
 error = (layerType !== type && layerType !==
'geomcollection') ? true : false;
 } else {
 error = true;
 }
 if (error) {
 interaction.finishDrawing();
 }
 }, this);
 }

Creating Responsive Applications with Interactions and Controls

[120]

If we are working with a draw line or draw polygon tool, we check for the active
layer. If it is not a vector, we simply call the interaction's finishDrawing method.
Note that calling this method in a draw point tool results in an error as the sketch
feature becomes null. Next, we add an event when a sketch is finished, which is
responsible for adding a feature to the source and displaying errors:

We can check for an empty string in a conditional statement, as it is
a false value in JavaScript. This means, not only the Boolean literal
false can be used for conditional checking, but any other value can get
evaluated to true or false in such cases. You can see the full list by
searching for JavaScript truthy falsey.

 interaction.on('drawend', function (evt) {
 var error = '';
 errorcheck: if (this.layertree.selectedLayer) {
 var selectedLayer = this.layertree.getLayerById(this.
layertree.selectedLayer.id);
 error = selectedLayer instanceof ol.layer.Vector ? ''
: 'Please select a valid vector layer.';
 if (error) break errorcheck;
 var layerType = selectedLayer.get('type');
 error = (layerType === type || layerType ===
'geomcollection') ? '' : 'Selected layer has a different vector
type.';
 } else {
 error = 'Please select a layer first.';
 }
 if (! error) {
 selectedLayer.getSource().addFeature(evt.feature);
 } else {
 this.layertree.messages.textContent = error;
 }
 }, this);
 return interaction;
};

You can use the break statement to break out of any labeled code block,
not just from the switch statements or the for loops. This is considered
as not a good practice because using this technique can decrease the
readability of your code, especially in case of poor label name choice.
However, in some cases, like ours (as we do not want our error to be
overwritten), this can come handy.

Chapter 5

[121]

If you save the code so far and open it up, you will see the drawing controls in
action. Add some new typed layers and draw some shapes with the corresponding
tool(s) that can be activated when the layer is selected. For an extra experience,
manually enable a disabled drawing control with your preferred browser's
Developer Tools, try to draw something, and see what happens:

Modifying and snapping to features
In this example, called ch05_modify, we will customize the remaining feature
editing interactions before we go on and create our own. Firstly, we create some
further CSS rules for our new controls:

.toolbar .ol-modifyfeat button {
 background-image: url(../../res/button_modifyfeat.png);
}
.toolbar .ol-snap button {
 background-image: url(../../res/button_snap.png);
}

Creating Responsive Applications with Interactions and Controls

[122]

Extending the method
Now that we have the required rules, we can extend our addEditingToolBar
method with two additional interactions. As both the modify and the snap
interactions accept a collection of features to work with, we go that way and store the
selected layer's features in a new collection object:

toolBar.prototype.addEditingToolBar = function () {
 […]
 this.activeFeatures = new ol.Collection();
 var modifyFeature = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Modify features',
 className: 'ol-modifyfeat ol-unselectable ol-control',
 interaction: new ol.interaction.Modify({
 features: this.activeFeatures
 })
 }).setDisabled(true);
 this.editingControls.push(modifyFeature);
 var snapFeature = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Snap to paths, and vertices',
 className: 'ol-snap ol-unselectable ol-control',
 interaction: new ol.interaction.Snap({
 features: this.activeFeatures
 })
 }).setDisabled(true);
 snapFeature.unset('type');
 this.editingControls.push(snapFeature);

We created two new custom controls with two interactions. As the snapping control
can be and must be active along another editing control, we manually remove its
type attribute before adding it to the toolbar. We also linked our new collection to
the interactions, making it possible to dynamically modify the features they will
work with. Next, we make sure to correctly update our activeFeatures object on
the layer change and add our new controls to the toolbar:

 layertree.selectEventEmitter.on('change', function () {
 […]
 var _this = this;
 setTimeout(function () {
 _this.activeFeatures.clear();

Chapter 5

[123]

 _this.activeFeatures.extend(layer.getSource().
getFeatures());
 }, 0);
 […]
 }, this); this.addControl(drawPoint).addControl(drawLine).
addControl(drawPolygon)
 .addControl(modifyFeature).addControl(snapFeature);
 return this;
};

As creating a copy from our selected layer's features takes some time, rendering
our layer tree unresponsive for a few seconds even with a smaller dataset, we make
it asynchronous by calling it in a setTimeout function set to zero milliseconds.
Note that this method will not speed up our code, but makes our application more
responsive.

A responsive application is technically a matter of chunking time-consuming code
blocks into smaller and faster ones, and timing their executions when the user
doesn't notice. The physical reaction of the human body is significantly slower
than visual reaction; thus, by placing the few seconds loading time after the visual
feedback with an asynchronous call, the users won't even notice that there was any
loading time. Of course, this theorem only applies to small datasets.

If you have to work with large datasets, this will definitely be a bottleneck
of your application. In this case, you can construct vector layers with a
new collection object and call the source's getFeaturesCollection
method on the layer change, avoiding the need for duplicating features.
However, as the inner collection of the interactions cannot be changed,
you have to construct a new interaction and remove the old one from the
map every time.

Finally, we only have to add every newly created feature to our collection, so the
interactions can be applied on them without changing the active layer:

toolBar.prototype.handleEvents = function (interaction, type) {
 […]
 interaction.on('drawend', function (evt) {
 […]
 this.activeFeatures.push(evt.feature);
 […]
};

Creating Responsive Applications with Interactions and Controls

[124]

If you save and load up the example, you can see our new controls in action:

Creating new interactions
Creating new interactions is a little different than creating new controls.
Instead of using a single root class, we can use ol.interaction.Pointer and
ol.interaction.Interaction. We will cover, in this chapter, why we should
use the pointer class. In this example, called ch05_pointer, we will implement
two custom interactions. One for removing features and one for dragging features.
Firstly, we define some CSS rules for our new controls, as usual:

.toolbar .ol-removefeat button {
 background-image: url(../../res/button_removefeat.png);
}
.toolbar .ol-dragfeat button {
 background-image: url(../../res/button_dragfeat.png);
}

Chapter 5

[125]

Understanding ol.interaction.Pointer
Before creating some custom interaction, let's discuss how the pointer interaction
works and how we can utilize it for our needs. This simple class can be constructed
with five different event handler functions. The handleEvent function overrides
every other handler and allows us to freely decide what to do with every different
mouse events. If we would like to use it, we can use ol.interaction.Interaction
instead; thus, we won't discuss it further here.

The first important handler is handleDownEvent. It fires every time when the left-
mouse button is pushed down. If it returns true, the map freezes and our custom
interaction gets into work. In the other case, the event is propagated to other
handlers; thus, in a default scenario, a map panning occurs.

The second one is handleDragEvent. If handleDownEvent returns true, for every
pointer that move afterwards, this function gets called. Finally, the handleUpEvent
fires when we release the mouse button. Theoretically, if it returns false, the drag
session is finished. In practice, however, its return value doesn't really matter. There
are other checks to end the drag session, if it returns true or doesn't return anything
at all.

There is one other handler called handleMoveEvent. It does not have much
significance in our current use cases; however, it fires every time. We move our
cursor while our interaction is active. It also fires during drag events along with the
drag handler.

As you can see, this class has a very limited vocabulary. For example, it
cannot distinguish between clicks and pointer down events. However, it
is easier to use and takes fewer considerations to yield less error-prone
results.

Removing features
Now that we have completely understood the mechanics of the pointer interaction,
it's time to create our first custom interaction: removing features. All our new
interactions will operate on a user-provided collection of features; thus, we
make them compatible with our editing toolbar's architectural design. Our new
interactions consist of two parts: calling the ol.interaction.Pointer constructor
with our handler functions, and setting some properties. Of course, we also have to
make some inheritance, as usual:

Creating Responsive Applications with Interactions and Controls

[126]

ol.interaction.RemoveFeature = function (opt_options) {
 ol.interaction.Pointer.call(this, {
 handleDownEvent: function (evt) {
 this.set('deleteCandidate', evt.map.
forEachFeatureAtPixel(evt.pixel,
 function (feature, layer) {
 if (this.get('features').getArray().
indexOf(feature) !== -1) {
 return feature;
 }
 }, this
));
 return !!this.get('deleteCandidate');
 },
 handleUpEvent: function (evt) {
 evt.map.forEachFeatureAtPixel(evt.pixel,
 function (feature, layer) {
 if (feature === this.get('deleteCandidate')) {
 layer.getSource().removeFeature(feature);
 this.get('features').remove(feature);
 }
 }, this
);
 this.set('deleteCandidate', null);
 }
 });
 this.setProperties({
 features: opt_options.features,
 deleteCandidate: null
 });
};
ol.inherits(ol.interaction.RemoveFeature, ol.interaction.Pointer);

In this simple interaction, we define two handlers, one for pushing down the mouse
button and one for releasing it. If we push down our mouse button, we check for
features under the pixel of the event. If there is a feature under the pixel, which is
also in our provided collection object, we save it and return true. Otherwise, we
return false.

You can convert any value to its Boolean representative by using negation
or double negation. As we double negate our saved feature, our function
only returns true if we have a stored value (which is not null).

Chapter 5

[127]

If our mouse down handler returns true, we check for features again when we
release the mouse button. If the saved feature is still under the pointer, we remove
the feature from the layer and also from the collection. With this logic, we not
only implement a primitive, but also an effective cancel method. Finally, we null
down our stored feature, set the default values for the interaction, and build the
inheritance.

Dragging features
Our next custom interaction, which is capable of dragging features through the
viewport, is slightly more difficult. We start it with the usual feature checking
handler function:

ol.interaction.DragFeature = function (opt_options) {
 ol.interaction.Pointer.call(this, {
 handleDownEvent: function (evt) {
 this.set('draggedFeature', evt.map.
forEachFeatureAtPixel(evt.pixel,
 function (feature, layer) {
 if
(this.get('features').getArray().indexOf(feature) !== -1) {
 return feature;
 }
 }, this
));
 if (this.get('draggedFeature')) {
 this.set('coords', evt.coordinate);
 }
 return !!this.get('draggedFeature');
 },

As you can see, there is only one difference between our previous interaction and
this. If we have a catch, we save the event coordinates. Next, we implement the
magic by moving the dragged feature by the difference between the consecutive
event coordinates:

 handleDragEvent: function (evt) {
 var deltaX = evt.coordinate[0] -
this.get('coords')[0];
 var deltaY = evt.coordinate[1] -
this.get('coords')[1];
 this.get('draggedFeature').getGeometry().translate(deltaX,
deltaY);
 this.set('coords', evt.coordinate);
 },

Creating Responsive Applications with Interactions and Controls

[128]

 handleUpEvent: function (evt) {
 this.setProperties({
 coords: null,
 draggedFeature: null
 });
 }
 });

After we translate the feature with the calculated delta values, we update our stored
coordinates; thus, we can move the feature further on the next drag event. After we
finish with moving the feature, we simply null our properties. Finally, we set up the
default values and build the inheritance.

All the geometry manipulating methods (transform, translate, applyTransform,
and type-specific ones) modify the geometry in place. If you need to keep your
original geometry, you must clone it first with it's clone method:

 this.setProperties({
 features: opt_options.features,
 coords: null,
 draggedFeature: null
 });
};
ol.inherits(ol.interaction.DragFeature, ol.interaction.Pointer);

Note that there is a built-in interaction for dragging features, called
ol.interaction.Translate. This interaction, however, moves
all the features passed to it at once.

Extending the method
As the last step, we only have to extend our addEditingToolBar method in order to
see our new interactions in action:

toolBar.prototype.addEditingToolBar = function () {
 […]
 var removeFeature = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Remove features',
 className: 'ol-removefeat ol-unselectable ol-control',
 interaction: new ol.interaction.RemoveFeature({
 features: this.activeFeatures
 })

Chapter 5

[129]

 }).setDisabled(true);
 this.editingControls.push(removeFeature);
 var dragFeature = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Drag features',
 className: 'ol-dragfeat ol-unselectable ol-control',
 interaction: new ol.interaction.DragFeature({
 features: this.activeFeatures
 })
 }).setDisabled(true);
 this.editingControls.push(dragFeature);
 […]
 this.addControl(drawPoint).addControl(drawLine).addControl
(drawPolygon)
 .addControl(modifyFeature).addControl(snapFeature).addControl
(removeFeature)
 .addControl(dragFeature);
 return this;
};

As we calibrate our interactions to accept a collection object with features in it, we
can simply pass our activeFeatures object to them. If you save the code and load it
up, you can play with removing and dragging features:

Creating Responsive Applications with Interactions and Controls

[130]

Building a measuring control
We have come to our last example in this chapter. In this example, called ch05_
measure, we will harness the full power of interactions and build a completely
custom one in which we manually handle every event type. This example has three
parts, so stay sharp. Firstly, as usual, we create a CSS rule for our new control button:

.toolbar .ol-measure button {
 background-image: url(../../res/button_measure.png);
}

One button is enough for this control, as we will implement two functionalities
(length and area measurement) into a single interaction.

Creating the interaction
In the interaction's constructor, we accept two properties in an object literal: a
reference to our map object and an optional style object or style function. As
interactions do not have the exposed setMap and getMap methods, we need a
reference to our map; thus, if it is not there, we return an error. If the style is not
defined, we simply assign a default style, which is a simplified version of the
OpenLayers 3 default editing style:

ol.interaction.Measure = function (opt_options) {
 var options = opt_options || {};
 if (!(options.map instanceof ol.Map)) {
 throw new Error('Please provide a valid OpenLayers 3
map');
 }
 var style = opt_options.style || new ol.style.Style({
 image: new ol.style.Circle({
 radius: 6,
 fill: new ol.style.Fill({
 color: [0, 153, 255, 1]
 }),
 stroke: new ol.style.Stroke({
 color: [255, 255, 255, 1],
 width: 1.5
 })
 }),
 stroke: new ol.style.Stroke({
 color: [0, 153, 255, 1],
 width: 3
 }),

Chapter 5

[131]

 fill: new ol.style.Fill({
 color: [255, 255, 255, 0.5]
 })
 });
 var cursorFeature = new ol.Feature();
 var lineFeature = new ol.Feature();
 var polygonFeature = new ol.Feature();

We also create some empty sketch features. Next, we call the interaction's factory
constructor with our custom handleEvent handler function:

 ol.interaction.Interaction.call(this, {
 handleEvent: function (evt) {
 switch (evt.type) {
 case 'pointermove':
 cursorFeature.setGeometry(new ol.geom.Point(evt.
coordinate));
 var coordinates = this.get('coordinates');
 coordinates[coordinates.length - 1] = evt.
coordinate;
 if (this.get('session') === 'area') {
 if (coordinates.length < 3) {
 lineFeature.getGeometry().
setCoordinates(coordinates);
 } else {
 polygonFeature.getGeometry().
setCoordinates([coordinates]);
 }
 }
 else if (this.get('session') === 'length') {
 lineFeature.getGeometry().
setCoordinates(coordinates);
 }
 break;

The handleEvent's return value defines whether the event needs to be
propagated further. If it returns true, other interactions will also get the
event; thus, we can pan or zoom the map while our interaction is active.

Firstly, we handle the move events. If we move our cursor while the interaction
is active, a point feature is displayed on our cursor, which is similar to the draw
interaction. Furthermore, it grabs a reference to our stored coordinate array
representing the sketch feature. It switches the array's last pair of coordinates to the
pointer's current location, pulling the last vertex of the sketch with the cursor.

Creating Responsive Applications with Interactions and Controls

[132]

If we are in a drawing session, it checks whether we are drawing a line or a polygon.
If it is a polygon, it draws a line until our polygon is displayable (has a minimum of
three vertices). After this, it draws a polygon. If it is a line, it simply draws a line.

Note that we do not have to erase the line when we switch to a polygon,
as they share the same coordinates. If we leave the existing line segment
there, it will not make any kind of visual noise.

Next, we handle click events. Basically, this is a simple function that starts a drawing
session or appends new coordinates to the coordinate array when we are in a session:

 case 'click':
 if (!this.get('session')) {
 if (evt.originalEvent.shiftKey) {
 this.set('session', 'area');
 polygonFeature.setGeometry
(new ol.geom.Polygon([[[0, 0]]]));
 } else {
 this.set('session', 'length');
 }
 lineFeature.setGeometry
(new ol.geom.LineString([[0, 0]]));
 this.set('coordinates', [evt.coordinate]);
 }
 this.get('coordinates').push(evt.coordinate);
 return false;

If we are not in a session, we check the original browser event. If the Shift key is
pressed, we start an area measurement, otherwise we measure a length. This is the
part where we set up the geometries of the features. Note that, at this point, we only
define some dummy geometries so they can pass the library's error checks. We will
dynamically overwrite them with our stored coordinate array later.

It seems to be a habit of using Alt and the Platform key as modifiers in
applications. Be cautious with those keys. The Platform key opens up the
Start menu in Windows, while the Alt key drags the active window in
Linux.

If we start a new drawing session, as you can see, we add two pairs of coordinates to
our array. This way, we can store the last clicked coordinate safe and sound, while
we also prepare a new pair of coordinates to be modified by the move handler.
Finally, we return false, as we don't want our interaction to be hooked up with
some other interaction when we click on the map.

Chapter 5

[133]

As the last pair of coordinates only indicate the place that the move
handler should modify, its original form won't influence the shape of our
geometry; therefore, the results in the accuracy of our measurement. You
can replace the penultimate line with this.get('coordinates').
push(['chicken', 'nuggets']); and the interaction will still work
as intended.

Next, we handle the double-click events. We stop the drawing, calculate the results,
and restore every significant property to their default values:

 case 'dblclick':
 var unit;
 if (this.get('session') === 'area') {
 var area =
polygonFeature.getGeometry().getArea();
 if (area > 1000000) {
 area = area / 1000000;
 unit = 'km²';
 } else {
 unit = 'm²';
 }
 this.set('result', {
 type: 'area',
 measurement: area,
 unit: unit
 });

If we measure an area, we calculate the polygon's area, convert the result if
necessary, and then update the result property:

 } else {
 var length =
lineFeature.getGeometry().getLength();
 if (length > 1000) {
 length = length / 1000;
 unit = 'km';
 } else {
 unit = 'm';
 }
 this.set('result', {
 type: 'length',
 measurement: length,
 unit: unit
 });
 }

Creating Responsive Applications with Interactions and Controls

[134]

If there is any other case, we must be dealing with a length measurement. We
calculate the line feature's length and follow our previous logic. In this handler, we
also return false as we do not want to propagate the event. Otherwise, in a default
setting, the event would be propagated to ol.interaction.DoubleClickZoom, and
we would unintentionally zoom into the map. If we have any other events, we just
return true propagating the event to other interactions:

With regard to unit notations, we currently only deal with metric
coordinate systems. As the getLength and getArea methods return
measurements in the projected plane, the interaction in its current form
returns correct results in any coordinate system (until it converts them),
but wrong units in non-metric systems.

 cursorFeature.setGeometry(null);
 lineFeature.setGeometry(null);
 polygonFeature.setGeometry(null);
 this.setProperties({
 session: null,
 coordinates: []

 });
 return false;
 }
 return true;
 }
 });

Finally, we remove the overlay when the interaction is inactive, and add it to the
map when it is active. We also set up the default properties and the inheritance. It is
important to set the line's and the polygon's geometry to null when we deactivate
the interaction. This way, if we disable the interaction during a drawing session, it
won't get stuck:

 this.on('change:active', function (evt) {
 if (this.getActive()) {
 this.get('overlay').setMap(this.get('map'));
 } else {
 this.get('overlay').setMap(null);
 this.set('session', null);
 lineFeature.setGeometry(null);
 polygonFeature.setGeometry(null);
 }
 });

Chapter 5

[135]

 this.setProperties({
 overlay: new ol.layer.Vector({
 source: new ol.source.Vector({
 features: [cursorFeature, lineFeature, polygonFeature]
 }),
 style: style
 }),
 map: options.map,
 session: null,
 coordinates: [],
 result: null
 });
};
ol.inherits(ol.interaction.Measure, ol.interaction.Interaction);

You can add a layer with the map object's addLayer method while you
can also add it with the layer object's setMap method. The latter adds the
layer to the map silently, skipping it from the map's layer collection, but
still drawing its content to the canvas.

Only one thing is left to do: we add a measurement control to our map. We do it in
our init function as this control is not part of the editing toolbar. We also assign an
event listener to it. If the result property changes, we annotate the results. As we
saved the overlay layer as a property too, you can add the newly created features to
a permanent layer in the same event before they become null:

var measureControl = new ol.control.Interaction({
 label: ' ',
 tipLabel: 'Measure distances and areas',
 className: 'ol-measure ol-unselectable ol-control',
 interaction: new ol.interaction.Measure({
 map: map
 })
});
measureControl.get('interaction').on('change:result', function
(evt) {
 var result = evt.target.get('result');
 tree.messages.textContent = result.measurement + ' ' +
result.unit;
});

tools.addControl(measureControl);

Creating Responsive Applications with Interactions and Controls

[136]

If you save the code and load it up, you can see our measurement control in action:

You can keep the geometry of the last measurement with some
modifications in the code. For additional help, you can see the
official example at http://www.openlayers.org/en/master/
examples/measure.html. It also provides some great styling tips.

Doing geodesic measurements
One thing I know for sure, Hungary's exact size is 93030 km2 and it does not
correspond with 207186 km2 measured with our tool. Of course, the measurement
wasn't precise, but the difference is by orders of magnitude. As you must have
known, projections distort spatial data in more ways. There are better and worse
projections from this aspect, and Web Mercator is one of the worst. In some
applications, measuring in the projected plane is sufficient, or it is the expected
behavior, but in others, more precise measurements are required. The good news is:
you can calculate lengths and areas accurately in basically any projection.

http://www.openlayers.org/en/master/examples/measure.html
http://www.openlayers.org/en/master/examples/measure.html

Chapter 5

[137]

The next example is in a separate JavaScript file, called ch05_measure_geodesic.
js. You can link it to the example's HTML file (ch05_measure.html) or modify
our interaction in place. In this example, we will modify the interaction in such
a way that it will always calculate lengths and areas of a sphere. Our sphere will
have a radius of the semi-major axis of the WGS 84 ellipsoid used by the EPSG:4326
projection. Firstly, we create the sphere inside our interaction:

ol.interaction.Measure = function (opt_options) {
 […]
 var sphere = new ol.Sphere(6378137);
 […]

Next, we modify our double-click handler where the calculations are done:

 case 'dblclick':
 var unit;
 var mapProjection = this.get('map').getView().
getProjection();
 if (this.get('session') === 'area') {
 var lonLatPolygon = polygonFeature.
getGeometry().transform(mapProjection, 'EPSG:4326');
 var area = Math.abs(sphere.
geodesicArea(lonLatPolygon.getCoordinates()[0]));
 […]
 } else {
 var lonLatLine = lineFeature.getGeometry().
transform(mapProjection, 'EPSG:4326');
 var lineCoordinates = lonLatLine.
getCoordinates();
 var length = 0;
 for (var i = 0; i < lineCoordinates.length
- 1; i += 1) {
 length += sphere.haversineDistance(lineCoo
rdinates[i], lineCoordinates[i +
1]);
 }
 […]

When we measure a sphere, we have to provide the coordinates in a longitude/
latitude format. Therefore, we have to transform the coordinates first from whatever
projection we use to EPSG:4326. For calculating areas, we have an easy job. We
simply have to pass a polygon's coordinates to our sphere's geodesicArea method.

Creating Responsive Applications with Interactions and Controls

[138]

The sign of the result depends on the orientation of the passed polygon's
coordinates. If the coordinates have a clockwise orientation, the result will
be positive, while in the other case, it will be negative. Calculating the
result's absolute value is recommended.

For calculating lengths, we can use the sphere's haversineDistance method. As it
calculates length between two given pairs of coordinates, we have to iterate through
the transformed line feature's coordinates.

If you update your interaction with these modifications, you will see that now you
can measure quite accurately. The new result for Hungary's area is 93051 km2, which
is quite good.

Calculating lengths even more precisely
The Haversine formula can be considered as quite accurate; however, in a few use
cases, millimeters to a 10th of a meter precision is required. In such cases, using
spherical geometry is not accurate enough.

An ellipsoidal approach, however, can provide the required accuracy at the expense
of performance. There is a third JavaScript file for this example, called ch05_
measure_vincenty.js. In this example, we will use a WGS 84 ellipsoid to define
the shape of the Earth and measure distances on it with the Vincenty formula. As the
ol.Ellipsoid class is not exposed in the compiled library, we have to use the ol-
debug.js file. As the ellipsoid class was removed from OpenLayers 3.9.0, we use the
debug file from version 3.8.2.

If you have an error, double check the link in the HTML file. It must
connect the debug version of OpenLayers 3.8.2 to our application.

Firstly, we define an ellipsoid in our interaction. The constructor needs the length of
the ellipsoid's semi-major axis in meters and also its flattening as arguments:

ol.interaction.Measure = function (opt_options) {
 […]
 var ellipsoid = new ol.Ellipsoid(6378137, 1 / 298.257223563);
 […]

Chapter 5

[139]

Next, we only have to modify the calculations of the length measurement:

 case 'dblclick':
 […]
 } else {
 […]
 for (var i = 0; i < lineCoordinates.length
- 1; i += 1) {
 length += ellipsoid.vincentyDistance(lineC
oordinates[i], lineCoordinates[i +
1]);
 […]
 }
 […]

Now, our application can calculate distances and areas as accurately as
OpenLayers 3 allows it to.

Summary
In this chapter, we mastered the heart of any web mapping, or WebGIS application,
interactions, and controls. We learned how to make brand new interactions and
controls, and how to modify or customize existing ones to our needs effectively.
We also learned how to implement some very useful controls for a web mapping
application. We didn't see directly how we can implement the attribute controls
from the previous chapter; however, you are most certainly able to do it based on
the other examples.

In the next chapter, we will learn how to customize the view and how to use
multiple, or even custom projections, with OpenLayers 3. We will see how deeply
Proj4JS is integrated into the library and how easily we can use its capabilities
almost directly from OpenLayers 3, if we include it in our project. We will also
play with extents, rotation values, and animations, just to mention a few.

[141]

Controlling the Map – View
and Projection

In the last few chapters, we gained a firm grip on using and customizing the most
essential parts of OpenLayers 3. In this chapter, we will take a further step in creating
a great application by focusing on user experience. A good web mapping or WebGIS
application has a lot of convenient GUI options to modify the view. In some cases,
your users will be more than happy if they are able to go through the view history
with some button clicks, or if they can change the map's rotation, projection, or just
zoom in to the selected feature. We will also learn how animations work and ways in
which they can utilized in order to create our own special camera effects. We'll take a
look at these topics in this chapter:

• Customizing and constraining the view
• Building a navigation history
• Zooming into arbitrary extents
• Changing the rotation and projection of the map
• Creating custom animations

Before getting started
For this chapter, we will need exactly one-third of a party library: PROJ4JS. It is
included in the code appendix, located at js/proj4js-2.3.10/proj4.js. We
will see how this library is not really a third-party application with regard to
OpenLayers 3, but rather an optional extension.

Controlling the Map – View and Projection

[142]

Furthermore, we have to modify our base layer as OpenStreetMap only supports
Web Mercator, but we need a layer that comes in multiple projections. For this
purpose, we utilize Natural Earth's 50m Land layer provided by Boundless's demo
GeoServer.

We use this layer for printing purposes. You can try out NASA's Blue
Marble layer (bluemarble) instead; it's truly beautiful.

First, let's make the necessary changes in our init function:

 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {
 layers: 'ne_50m_land',
 format: 'image/png'
 }
 }),
 name: 'Natural Earth Land'
 }),
 […]
 };

Basic considerations
As we've focused enough on interactions and controls in the previous chapters, we
would rather focus on controlling the view in this one. We will create some tools
and add them to the toolbar, but we will not build further structures to support our
example project. In this chapter, we will take the final step in creating a WebGIS
application by filling out the remaining gaps and consider it to then be complete.

Chapter 6

[143]

Customizing a view
Customizing the view is not a hard task; it manly consists of considerations
regarding the nature of the project and expected outcome. For our application,
wrapping the map around the x axis is completely needless. Also, we can restrict
the extent to the projection's extent. In the first example, called ch06_customize, we
make such modifications in our application. First, we disable the layer wrapping in
our base layers:

 var map = new ol.Map({
 […]
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 […]
 wrapX: false
 […]
 new ol.layer.Vector({
 source: new ol.source.Vector({
 […]
 wrapX: false
 }),

Unlike in OpenLayers 2, you cannot make a high level decision to
disable layer wrapping for the entire map. You have to disable it
layer-wise in the layer's source object, as it is enabled in most of the
sources by default.

With this consideration, we gained an instant boost in performance. However, we have
to say goodbye to it instantly as this will make our map more responsive. By default,
when we are interacting with the map or an animation takes place, tile and vector
layers wait for us to finish before they get updated. We can disable this phenomenon
with two options. In case of vector layers, we have to disable it in the layer level, but
for tile layers, we can disable it in the map object. We can do it in this way:

 new ol.layer.Vector({
 […]
 updateWhileAnimating: true,
 updateWhileInteracting: true
 })
 […]
 loadTilesWhileAnimating: true,
 loadTilesWhileInteracting: true
 });

Controlling the Map – View and Projection

[144]

In the next step, we'll modify the view object to restrict the maximum extent. Note
that we can pan outside the map's extent since this option only constrains the center
of the map:

 view: new ol.View({
 […]
 extent: ol.proj.get('EPSG:3857').getExtent()
 }),

As the Web Mercator projection is provided by the library, we can use a
shortcut to access it. Later, we will see how to add new projections to the
library's projection list.

Finally, we enable some keyboard interactions. There are two interactions related
to the keyboard events in OpenLayers 3, and both of them get added to the map
by default. However, we cannot use them as only focused elements can receive
keyboard events, and only input-related elements can be focused by default. To
make our map's div element focusable, we must add a tabindex property to it in the
HTML file:

[…]
<div id="map" class="map" tabindex="-1"></div>
[…]

Now, if we click on the map, we can pan with the arrow keys and zoom in with the +
(plus) and - (minus) keys.

You can provide -1, 0, or any positive integer to the tabindex
property. The -1 value opts out the element from focusing with the
Tab key, but it makes it focusable with a mouse click or with the focus
method. The 0 value does not alter the natural focusing order with the
Tab key, while a positive integer determines its order.

If a focusable element gains focus, some browsers render an outline on the border of
the element. As we do not want to have an outline on our map, we will disable it in
our CSS file by extending our map class with a single rule:

.map {
 […]
 outline: 0;
}

Chapter 6

[145]

Constraining a view
There are some cases when restricting the center is not enough; the users should not
pan outside an arbitrary extent. There is an easy method to do this; however, it is
hard to calculate with rotations and impossible to show every part of a rotated map
with a hard constrained view. In the next example, called ch06_constrain, we will
implement this method.

We will learn how to rotate the map later in this chapter.

An easy implementation calculates a new extent based on a more permissive, full
extent for a given resolution. Then, we simply check the value of the center in every
change in the map's view and snap it to our new extent's border if it tries to escape it:

map.getView().on('propertychange', function (evt) {
 var projExtent = this.getProjection().getExtent();
 if (projExtent) {
 var currentCenter = this.getCenter();
 var currentResolution = this.getResolution();
 var mapSize = map.getSize();
 var newExtent = [projExtent[0] + currentResolution *
mapSize[0] / 2,
 projExtent[1] + currentResolution * mapSize[1] / 2,
 projExtent[2] - currentResolution * mapSize[0] / 2,
 projExtent[3] - currentResolution * mapSize[1] / 2];
 if (!(new ol.geom.Point(currentCenter).
intersectsExtent(newExtent))) {
 currentCenter[0] = Math.min(Math.max(currentCenter[0],
newExtent[0]), newExtent[2]);
 currentCenter[1] = Math.min(Math.max(currentCenter[1],
newExtent[1]), newExtent[3]);
 this.setCenter(currentCenter);
 }
 }
});

We can calculate our new extent, which the center should not leave with the map's
size and current resolution. Then, we create a point geometry from our center
coordinates and check for possible intersections. If it does not intersect (that is, it's
outside the new extent), we snap it to the nearest border.

Controlling the Map – View and Projection

[146]

You can constrain a number in JavaScript between two values by nesting
a Math.max method in a Math.min method or vice versa. Just make
sure that you use the correct extreme in the comparisons.

If you save the code, you will see that you cannot pan outside the edges of the map:

If you use this method, you will have a hard time with rotated maps. To
top this, you have to restrict the maximum resolution of the view because
if the map size is smaller than the restrictive extent, the application will
break.

Creating a navigation history
In the next example, called ch06_navhist, we will create a fully functional
navigation history. First, as usual, we have to make some considerations. We will
store an array in the control containing the view properties for every change. We
will also store the current index as we must remember to step our control between
view states. A not-so-important property that we will store is a Boolean value,
representing whether we should record the new view or not. This is particularly
handy when we step between the history elements and do not want to double store
these states. First, we create the first button for the control:

Chapter 6

[147]

ol.control.NavigationHistory = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = options.class || 'ol-unselectable ol-
control';
 var backButton = document.createElement('button');
 backButton.className = 'ol-navhist-back';
 backButton.textContent = options.backButtonText || '◀';
 backButton.title = options.backButtonTipLabel || 'Previous
view';
 backButton.addEventListener('click', function (evt) {
 var historyArray = _this.get('history');
 var currIndex = _this.get('index');
 if (currIndex > 0) {
 currIndex -= 1;
 _this.setProperties({
 shouldSave: false,
 index: currIndex
 });
 _this.getMap().getView().setProperties(historyArray[currI
ndex]);
 }
 });
 backButton.disabled = true;
 controlDiv.appendChild(backButton);

This is a usual custom control with a little twist. As we have unicode triangle symbols,
we do not have to render a background image to this control. When clicking a
button, if we are not in the first state, we will decrease our index and update the view
accordingly. We also set our shouldSave Boolean to false as we do not want to save
again an already recorded state. Next, we will create the other button:

If you do not see the triangle symbols properly, check whether your
browser uses an UTF-8 encoding. If it does, update it to the latest
version.

 var nextButton = document.createElement('button');
 nextButton.className = 'ol-navhist-next';
 nextButton.textContent = options.nextButtonText || '►';
 nextButton.title = options.nextButtonTipLabel || 'Next view';
 nextButton.addEventListener('click', function (evt) {
 var historyArray = _this.get('history');
 var currIndex = _this.get('index');

Controlling the Map – View and Projection

[148]

 if (currIndex < historyArray.length - 1) {
 currIndex += 1;
 _this.setProperties({
 shouldSave: false,
 index: currIndex
 });
 _this.getMap().getView().setProperties(historyArray[currI
ndex]);
 }
 });
 nextButton.disabled = true;
 controlDiv.appendChild(nextButton);

This button acts like the previous one; however, it checks whether we are at the end
of our history array, and if not, it increases the index. In the next step, we'll finish our
control by setting its initial values, adding a listener, and building the inheritance:

 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
 this.setProperties({
 history: [],
 index: -1,
 maxSize: options.maxSize || 50,
 eventId: null,
 shouldSave: true
 });
 this.on('change:index', function () {
 if (this.get('index') === 0) {
 backButton.disabled = true;
 } else {
 backButton.disabled = false;
 }
 if (this.get('history').length - 1 === this.get('index')) {
 nextButton.disabled = true;
 } else {
 nextButton.disabled = false;
 }
 });
};
ol.inherits(ol.control.NavigationHistory, ol.control.Control);

Chapter 6

[149]

We set our initial index to -1, as our control will automatically increment it by
one if it saves the first state of the view. Our users can define the maximum size of
the history; however, we also set a default value of 50. The listener attached to the
changes in the index property makes sure that our control buttons get disabled and
enabled appropriately. If we are in the first index, we cannot go back, and if we
are in the last one, we cannot step further. Next, we override the control's setMap
method, and attach a detachable (stored) event listener to the map:

ol.control.NavigationHistory.prototype.setMap = function (map) {
 ol.control.Control.prototype.setMap.call(this, map);
 if (map === null) {
 ol.Observable.unByKey(this.get('eventId'));
 } else {
 this.set('eventId', map.on('moveend', function (evt) {
 if (this.get('shouldSave')) {
 var view = map.getView();
 var viewStatus = {
 center: view.getCenter(),
 resolution: view.getResolution(),
 rotation: view.getRotation()
 };
 var historyArray = this.get('history');
 var currIndex = this.get('index');
 historyArray.splice(currIndex + 1, historyArray.length
- currIndex - 1);
 if (historyArray.length === this.get('maxSize')) {
 historyArray.splice(0, 1);
 } else {
 currIndex += 1;
 }
 historyArray.push(viewStatus);
 this.set('index', currIndex);
 } else {
 this.set('shouldSave', true);
 }
 }, this));
 }
};

As you are clearly familiar with our event attaching and detaching mechanisms by
now, we won't discuss it here any further. The listener attached to the map's moveend
event, however, needs to be discussed.

Controlling the Map – View and Projection

[150]

We only act if our shouldSave Boolean is set to true. We gather the view's center,
rotation, and resolution, and store them in an object. This ensures that we can restore
them with the view's setProperties method, and at the same time, we don't store
unnecessary properties.

Remember: one can assign an arbitrary number of properties to an
OpenLayers 3 object.

When we update our history array, we clear out everything from the current index to
the end of the array. This operation makes sure that we save the view states correctly
from a given index. We also clear the first member of the array if we exceed the
maximum size of the history. Finally, we add the new control to our toolbar:

var tools = new toolBar({
 map: map,
 target: 'toolbar',
 layertree: tree,
}).addControl(new ol.control.Zoom()).addControl(new
ol.control.NavigationHistory());

If you save the code and load it in a browser, you will be able to try out our new
navigation history:

Chapter 6

[151]

With this method, you can also create geographical bookmarks. You just have to
create a control, which creates an object for every named extent and an interface to
provide those names.

Working with extents
In a WebGIS application, it is especially feasible to have controls to zoom into
various extents. Users are used to the luxury of zooming in to a layer or a feature to
the maximum extent with a single click. In this example, called ch06_extent, we will
implement such zooming capabilities. We will create a tool to zoom into the validity
extent of the current projection, one for zooming into the selected layer, and the other
to zoom into the selected feature. First, let's make some CSS rules for our new tools:

.toolbar .ol-zoom-extent button {
 background-image: url(../../res/button_zoom_extent.png);
}
.toolbar .ol-zoom-layer button {
 background-image: url(../../res/button_zoom_layer.png);
}
.toolbar .ol-zoom-selected button {
 background-image: url(../../res/button_zoom_selected.png);
}

Creating a zoom control
There is a built-in control in OpenLayers 3 to zoom into various extents. However,
the main weakness of ol.control.ZoomToExtent lies in its static nature. We can
define an arbitrary extent on construction and cannot change it afterwards. There
is one strength of this control, however. If we do not provide an extent, it reads
the current projection's validity extent. This spark of dynamism makes this control
suitable for our first use case. For the rest of the tools, we make our own zoom
control, which accepts a function, rather than a static extent, and zooms into the
return value of that function:

ol.control.ZoomTo = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = options.class || 'ol-unselectable ol-
control';
 var controlButton = document.createElement('button');
 controlButton.textContent = options.label || '';

Controlling the Map – View and Projection

[152]

 controlButton.title = options.tipLabel || 'Zoom to extent';
 controlButton.addEventListener('click', function (evt) {
 var zoomCandidate = _this.get('extentFunction')();
 if (zoomCandidate instanceof ol.geom.SimpleGeometry ||
 (Object.prototype.toString.call(zoomCandidate) ===
'[object Array]' && zoomCandidate.length === 4)) {
 _this.getMap().getView().fit(zoomCandidate,
_this.getMap().getSize());
 }
 });
 controlDiv.appendChild(controlButton);
 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
 this.set('extentFunction', options.zoomFunction);
};
ol.inherits(ol.control.ZoomTo, ol.control.Control);

As the view object's fit method can only receive a simple geometry or an extent
besides a mandatory size argument, we will check whether the return value of the
provided function fits this criteria. Note that we only check this if the returned extent
is an array has exactly four members. For a more general control, further checks
should be considered.

If you played with JavaScript's typeof method, you may know that only
primitives are distinguishable from it. Arrays are considered as objects.
However, objects have subtypes, which can be extracted by calling
Object.prototype.toString with an object. Be careful, though. This
method is not protected; therefore, any library can overwrite it.

Extending the toolbar
Next, we extend our toolbar with a method, which creates three extent controls:

toolBar.prototype.addExtentControls = function () {
 var _this = this;
 var zoomFull = new ol.control.ZoomToExtent({
 label: ' ',
 tipLabel: 'Zoom to full extent'
 });
 var zoomToLayer = new ol.control.ZoomTo({
 class: 'ol-zoom-layer ol-unselectable ol-control',

Chapter 6

[153]

 tipLabel: 'Zoom to layer extent',
 extentFunction: function () {
 var source = _this.layertree.getLayerById(_this.layertree.
selectedLayer.id).getSource();
 if (source.getExtent()) {
 return source.getExtent();
 }
 return false;
 }
 });

The first two controls are very simple. For the full extent control, we use OpenLayers
3's mechanism, while for the layer extent control, we provide a function, calling the
getExtent method of the layer's source.

Only vector sources have a factory method to get their extent.
However, you can create such a method for any layer with the same
functionality. Just make sure that you store the extent of the layer in
its source object. For WMS layers, you can parse their extent from their
GetCapabilities response.

Next, we create the selection extent control, which is a little more complicated, and
close our method appropriately:

 var zoomToSelected = new ol.control.ZoomTo({
 class: 'ol-zoom-selected ol-unselectable ol-control',
 tipLabel: 'Zoom to selected feature',
 extentFunction: function () {
 var features = _this.selectInteraction.getFeatures();
 if (features.getLength() === 1) {
 var geom = features.item(0).getGeometry();
 if (geom instanceof ol.geom.SimpleGeometry) {
 return geom;
 }
 return geom.getExtent();
 }
 return false;
 }
 });
 this.addControl(zoomFull).addControl(zoomToLayer).
addControl(zoomToSelected);
 return this;
};

Controlling the Map – View and Projection

[154]

We only accept one feature in this scenario, as allowing more features requires
extra calculations. If the feature is a single part, we return it, avoiding unnecessary
operations, while if it's multipart, we calculate its extent and return this instead.
Finally, we add the new controls to the toolbar:

tools.addExtentControls().addSelectControls().addEditingToolBar();

If you save the code and run it in your browser, you will see our extent controls up
and running:

Rotating a view
The penultimate control that we add to our application before we consider it
finished, is the rotation control in the next example: ch06_rotate. We will place it
in the bottom bar along with the upcoming projection control. In the first step, we
extend our HTML file with container elements for them:

 <div class="notification-bar">
 <div id="messageBar" class="message-bar"></div>
 <div id="projection"></div>
 <div id="rotation"></div>
 <div id="coordinates"></div>
 </div>

Chapter 6

[155]

Next, we create some CSS rules for the rotation control:

.notification-bar #rotation {
 width: 10%;
 text-align: center;
}
.notification-bar #rotation input {
 text-align: center;
 outline: none;
 border: 0;
 -moz-appearance: textfield;
}

We align the control to the center of the container element and remove any border or
outline from it.

In Firefox, the spinner buttons for numeric inputs exceed the size of the
numeric input itself. This is a well-known bug, and it would cause our
application to be higher than the height of the screen. To avoid this, we
disable these spinner buttons in Firefox.

Next, we create a simple control to change the map's rotation every time our numeric
input changes:

ol.control.RotationControl = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var controlInput = document.createElement('input');
 controlInput.title = options.tipLabel || 'Set rotation';
 controlInput.type = 'number';
 controlInput.min = 0;
 controlInput.max = 360;
 controlInput.step = 1;
 controlInput.value = 0;
 controlInput.addEventListener('change', function (evt) {
 var radianValue = this.value / 180 * Math.PI;
 _this.getMap().getView().setRotation(radianValue);
 });
 ol.control.Control.call(this, {
 element: controlInput,
 target: options.target
 });
 this.set('element', controlInput);
};
ol.inherits(ol.control.RotationControl, ol.control.Control);

Controlling the Map – View and Projection

[156]

The only thing we have to make sure here is that we convert the input values from
degrees to radians, as OpenLayers 3 uses radian values. We also make sure that our
input updates if the map's rotation changes from other sources (for example, from
the navigation history):

ol.control.RotationControl.prototype.setMap = function (map) {
 ol.control.Control.prototype.setMap.call(this, map);
 if (map === null) {
 ol.Observable.unByKey(this.get('eventId'));
 } else {
 this.set('eventId', map.getView().on('change:rotation',
function (evt) {
 var degreeValue = Math.round(map.getView().getRotation() /
Math.PI * 180);
 this.get('element').value = degreeValue;
 }, this));
 }
};

Note that as we register a listener in the view object, we have to register
it again every time we use a new view object. For example, we will
construct a new view object in the next example for every change in the
projection.

Finally, we add the control to the map with our destination element as the target:

var map = new ol.Map({
 […]
 controls: [
 […]
 new ol.control.RotationControl({
 target: 'rotation'
 })
 […]
});

Now, you can try out our new control, and rotate the map between 0 degrees and
360 degrees:

Chapter 6

[157]

Changing the map's projection
In the next example, called ch06_projection, we close our basic WebGIS client with
a final control, which is able to change the map's projection dynamically. First, as we
will need the PROJ4JS library for this example, we include it in the HTML file:

<script type="text/javascript" src="../../js/proj4js-2.3.10/proj4.
js"></script>

Next, we style the control with CSS:

.notification-bar #projection {
 text-align: center;
}
.notification-bar #projection select {
 background: none;
 border: none;
 outline: 0;
}

Controlling the Map – View and Projection

[158]

The scheme is the same as the one in the previous example. We will strip the natural
look of the select element, which will contain the possible projection options. Next,
we start building the control by creating two options for the two default projections:

ol.control.Projection = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var projSwitcher = document.createElement('select');
 var webMercator = document.createElement('option');
 webMercator.value = 'EPSG:3857';
 webMercator.textContent = 'EPSG:3857';
 projSwitcher.appendChild(webMercator);
 var plateCarree = document.createElement('option');
 plateCarree.value = 'EPSG:4326';
 plateCarree.textContent = 'EPSG:4326';
 projSwitcher.appendChild(plateCarree);

The concept here is that we store the projection's string representation as the option's
value, and request the appropriate projection from the library. As HTML elements
can be overridden in the browser, further checks might be necessary. Next, we add
an event listener to the control element and close our control:

 projSwitcher.addEventListener('change', function (evt) {
 var view = _this.getMap().getView();
 var oldProj = view.getProjection();
 var newProj = ol.proj.get(this.value);
 var newView = new ol.View({
 center: ol.proj.transform(view.getCenter(), oldProj,
newProj),
 zoom: view.getZoom(),
 projection: newProj,
 extent: newProj.getExtent()
 });
 _this.getMap().setView(newView);
 _this.getMap().getLayers().forEach(function (layer) {
 _this.changeLayerProjection(layer, oldProj, newProj);
 });
 });
 ol.control.Control.call(this, {
 element: projSwitcher,
 target: options.target
 });
 this.set('element', projSwitcher);
};
ol.inherits(ol.control.Projection, ol.control.Control);

Chapter 6

[159]

When we change the projection, we simply construct a new view object with the
appropriate projection and a transformed center in order to preserve the previous
view. We also loop through the layers and apply a method on them, which we will
discuss soon. For now, we set the control element's default value to the current
projection:

ol.control.Projection.prototype.setMap = function (map) {
 ol.control.Control.prototype.setMap.call(this, map);
 if (map !== null) {
 this.get('element').value = map.getView().getProjection().
getCode();
 }
};

As we need to transform vector layers to the new projection and also request new
tiles, if available, we will create a changeLayerProjection method, which can deal
with every case:

ol.control.Projection.prototype.changeLayerProjection = function
(layer, oldProj, newProj) {
 if (layer instanceof ol.layer.Group) {
 layer.getLayers().forEach(function (subLayer) {
 this.changeLayerProjection(subLayer, oldProj, newProj);
 });
 } else if (layer instanceof ol.layer.Tile) {
 var tileLoadFunc = layer.getSource().getTileLoadFunction();
 layer.getSource().setTileLoadFunction(tileLoadFunc);
 } else if (layer instanceof ol.layer.Vector) {
 var features = layer.getSource().getFeatures();
 for (var i = 0; i < features.length; i += 1) {
 features[i].getGeometry().transform(oldProj, newProj);
 }
 }
};

The method itself is recursive, as it needs to deal with grouped layers, too. If it finds
one, it simply calls itself on every member of the group.

The second case is the that of the tile layers. WMS servers often offer tiles in multiple
projections. However, there is a truly wonderful but also very sneaky feature in
OpenLayers 3, called tile cache. If we do not clear the cache, the application renders
tiles from the old projection to the new one's tile grid, which yields bad results. As
the tile cache is completely hidden from us, our only chance to tackle this problem is
to call a method, which clears the cache as a side effect. There are two such methods:
setTileLoadFunction and setTileUrlFunction. We save the old function, set it
back, and thus clear the cache without any other change in the layer.

Controlling the Map – View and Projection

[160]

The last case is the case of vector layers. This is quite straightforward, as our only
task is iterating through the features and transforming their geometries from the old
projection to the new one.

OpenLayers 3 is capable of warping raster layers; you just have to
provide a projection parameter to the given image source. Note that
if you reset the cache of a tile layer and the server cannot give out
tiles in the destination projection, you will end up with a blank layer.
Sometimes, blurred and ugly labels are better than nothing.

We also need a method to add projections dynamically to the control. Here's how we
can do this:

ol.control.Projection.prototype.addProjection = function (projection)
{
 ol.proj.addProjection(projection);
 var projSwitcher = this.get('element');
 var newProjOption = document.createElement('option');
 newProjOption.value = projection.getCode();
 newProjOption.textContent = projection.getCode();
 projSwitcher.appendChild(newProjOption);
};

A good implementation should also have a method that can remove a
projection. Note that ol.proj does not have a removeProjection
method, though.

Next, we will construct our new control in the init function, create a new projection
with PROJ4JS, and add the projection to the control:

var projControl = new ol.control.Projection({
 target: 'projection'
});
proj4.defs('EPSG:3995', '+proj=stere +lat_0=90 +lat_ts=71 +lon_0=0
+k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs');
var polarProj = new ol.proj.Projection({
 code: 'EPSG:3995',
 extent: [-12382000, -12382000, 12382000, 12382000],
 worldExtent: [-180, 60, 180, 90]
});
projControl.addProjection(polarProj);

Chapter 6

[161]

Do not confuse PROJ.4 with PROJ4JS. PROJ4JS is a JavaScript port
of the PROJ.4 desktop application, and it does not contain every
transformation from the original software. For example, it cannot
recognize the Robinson projection.

OpenLayers 3 and PROJ4JS are so closely integrated that we do not need to
implement any wrapper functions; we can construct an OpenLayers 3 projection
object directly from a PROJ4JS definition. PROJ4JS definitions can be made with
proj4.defs, which are called with two arguments. The first one represents a name,
with which the projection will be saved. The second one is the projection's PROJ.4
definition.

Wondering how to get definition strings and extents? The database
behind http://www.epsg.io offers many definitions along with
recommended extents. Do not rely blindly on those extents, though.
They can fail, especially when the projection is not cylindrical.

Finally, we add the control to our map:

var map = new ol.Map({
 […]
 controls: [
 […]
 projControl
 […]
});

If you save the code and look it up, you can try out our new projection. Note that
the Arctic Polar Stereographic projection's validity extent only covers the northern
hemisphere. For features with lower latitudes, the distortion will be ludicrously high.

http://www.epsg.io

Controlling the Map – View and Projection

[162]

This is the better case, though, as exceeding some projections' validity extent
results in an erroneous transform, destroying the feature's geometry. To make your
application more stable, you shouldn't leave geometry handling entirely to the
library.

Creating custom animations
In a WebGIS application, animations do not play serious roles; however, in some
web mapping applications that are focused on user experience, they can really
come in handy. In the last example, called ch06_animation, we will go through the
process of making our own special camera effects. The theory behind animations is
very important but quite mathematical, so try to keep up with me. First, we declare
some CSS rules for our custom animation control:

.ol-rocket {
 top: 20px;
 right: 20px;
}
.ol-rocket button {
 background-image: url(../../res/button_rocket.png);
 background-size: contain;
 background-repeat: no-repeat;
 background-position: 50%;
}

Chapter 6

[163]

Building the control
Next, we create a simple control, which will trigger the animation process. Let's
make a little revision first. Animations can be triggered by calling the map object's
beforeRender method with one or more animation functions. We can provide a
start time and, occasionally, source, resolution, or rotation. These functions
make sure that our view is animated before it switches to the next destination. After
the first change in the view, the list of animations gets cleared and changes take
place immediately later without animations. In this example, we make two custom
animations: one for zooming into the maximum resolution of an OpenSteetMap layer
(rocketTakeOff) and the other to zoom into my campus (rocketLanding):

ol.control.RocketFlight = function () {
 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = 'ol-rocket ol-unselectable ol-control';
 var controlButton = document.createElement('button');
 controlButton.title = 'Launch me';
 controlButton.addEventListener('click', function () {
 var view = _this.getMap().getView();
 _this.getMap().beforeRender(
 ol.animation.rocketTakeoff({
 resolution: view.getResolution(),
 rotation: view.getRotation()
 })
);
 view.setResolution(39135.75848201024);

The first part, as mentioned previously, zooms into the maximum zoom level from
the current resolution in an imaginary rocket. Next, we call an animation, which is
designated to zoom into the final destination:

 setTimeout(function () {
 _this.getMap().beforeRender(
 ol.animation.pan({
 duration: 2000,
 source: view.getCenter(),
 easing: ol.easing.linear
 }),
 ol.animation.rocketLanding({
 resolution: view.getResolution(),
 rotation: view.getRotation()
 })
);

Controlling the Map – View and Projection

[164]

 view.setProperties({
 center: [2026883.0676951527, 5792745.55306364],
 resolution: 0.5971642834779395
 });
 }, 5100);
 });
 controlDiv.appendChild(controlButton);
 ol.control.Control.call(this, {
 element: controlDiv
 });
};
ol.inherits(ol.control.RocketFlight, ol.control.Control);

As we cannot trigger an animation before the previous one is finished, we delay it by
a little more than five seconds. Our first animation will take exactly five seconds to
complete, but we do not want the two animations to hook up.

Creating animations
Before we create our first custom animation, let's discuss how animations work in
OpenLayers 3. Every animation function returns a function. The returned function
receives two arguments. The first is the map object, which is negligible in most of
the cases. The second one is the frame state. The returned function gets called in
every frame until it returns false. From the frame state object, the most important
properties that we can decipher is the current time and the view's updated state.

If you are a visual type, this might help you understand animations in OpenLayers 3
better. Imagine a spring. When we start an animation, we fixate one end in the new
view. We hold the other end in the previous view where we start animating from.
The spring will be in stationary state when both of its ends are in the new view. If
we stop animating, we release the spring, which instantly jumps to the new view,
as it wants to be in its stationary state. However, until we are animating, we move
the end that we hold continuously to the fixated end for a fluent result. But how do
we know how much it needs to be moved in a given time? We calculate it from the
initial distance and the passed time. Finally, we move closer to the fixed end by the
value it needs to be moved. Of course, every spring can be moved in two directions;
thus, we can pull the spring in the opposite direction. If we do this, however, we
have to calculate with an inverse distance.

Chapter 6

[165]

There is a very important function, which we will call frequently, called easing. An
easing function in the library expects a number between 0 and 1, representing the
percentage value for which a movement in the animation is completed. It returns a
scaling factor that's based on a function curve, with which a linear movement should
be multiplied by in order to result in a tween. Now, we create our first custom
animation function to zoom out of the map in the application:

ol.animation.rocketTakeoff = function (options) {
 var now = +new Date();
 return function (map, frameState) {
 if (frameState.time < now + 5000) {
 var delta = 1 - ol.easing.easeIn((frameState.time -
now) / 5000);
 var deltaResolution = options.resolution -
frameState.viewState.resolution;
 frameState.animate = true;
 frameState.viewState.resolution += delta *
deltaResolution;
 if (frameState.time > now + 2000 && frameState.time <
now + 3000) {
 var rotateDelta = ol.easing.linear((frameState.time -
now - 2000) / 1000);
 var deltaRotation = options.rotation - 0.5;
 frameState.viewState.rotation += deltaRotation *
rotateDelta;
 } else if (frameState.time >= now + 3000 && frameState.
time < now + 4000) {
 var rotateDelta = 1 - ol.easing.linear((frameState.
time - now - 3000) / 1000);
 var deltaRotation = options.rotation - 0.5;
 frameState.viewState.rotation += deltaRotation *
rotateDelta;
 }
 frameState.viewHints[0] += 1;
 return true;
 }
 return false;
 };
};

As mentioned previously, every frame state comes with a timestamp. There is a twist
in the timestamps, though, as it represents the current date in milliseconds.

Controlling the Map – View and Projection

[166]

In most programming languages, such as JavaScript, the current date
represents the elapsed time between 1970, January 1, 00:00:00 and the
operating system's current time.

This way, we have to adjust our timing with a new Date object, which we can cast to
milliseconds by preceding it with + on construction. We save the starting time of our
animation with this method and compare every frame state's timestamp to it. As we
want our first animation to take 5 seconds, we update our frame states for this time,
then return false, terminating the animation.

For the resolution change, we use the ol.easing.easeIn function, which starts fast
and slows down at the end. We must provide the inverse value that's returned by the
easing function, though, as we move toward our destination.

In every function call, our animation function gets the updated
properties of the view object. While the animation exists, we can
overwrite the view on every frame by modifying the frameState
object's viewState properties. This is how animations work in
OpenLayers 3.

We increase our view state's resolution with the delta resolution between the initial
and target value multiplied by the value that's returned by our easing function. This
will make sure that our animation is fluent for the time it takes place.

If the animation is between 2 and 3 seconds, we rotate the view with a linear easing.
We do not have to invert the returned value as we are moving from our destination
(the updated rotation value). To turn back the rotation between the fourth and the
fifth seconds, we take the same procedure with an inverse easing value.

If you want to use a linear easing, you do not have to use an easing
function at all. The ol.easing.linear function returns the
provided value without any modifications. I'm just using it now for
consistency.

As you may have noticed, we changed two values in the frame state's besides its
view state's properties. Setting its animate property to true is mandatory; otherwise,
the animation stops. Updating the 0 property of its viewHints object is optional,
though. That property shows, how many animations are modifying the view at a
current frame.

Chapter 6

[167]

Next, we create our second animation to land in our imaginary rocket's shuttle:

ol.animation.rocketLanding = function (options) {
 var now = +new Date();
 var direction = Math.round(Math.random());
 return function (map, frameState) {
 if (frameState.time < now + 15000) {
 var delta = 1 - ol.easing.parachuate((frameState.time
- now) / 15000);
 var deltaResolution = options.resolution -
frameState.viewState.resolution;
 frameState.animate = true;
 frameState.viewState.resolution += delta *
deltaResolution;
 if (frameState.time > now + 5000 && frameState.time <
now + 7000) {
 var rotateDelta = ol.easing.linear((frameState.time -
now - 5000) / 2000);
 var deltaRotation = options.rotation + 2 *
Math.PI;
 frameState.viewState.rotation += deltaRotation *
rotateDelta;
 } else if (frameState.time > now + 7000 &&
frameState.time < now + 10000) {
 var panDelta = ol.easing.linear((frameState.time -
now - 7000) / 3000);
 frameState.viewState.center[direction] += 500 *
panDelta;
 } else if (frameState.time >= now + 10000 &&
frameState.time < now + 12000) {
 var panDelta = 1 -
ol.easing.linear((frameState.time - now - 10000) / 2000);
 frameState.viewState.center[direction] += 500 *
panDelta;
 }
 frameState.viewHints[0] += 1;
 return true;
 }
 return false;
 };
};

Controlling the Map – View and Projection

[168]

In this function, at the end of the landing, we swing our capsule on a random
axis. The landing takes 15 seconds. For the duration of this period, we decrease
the resolution with a custom easing function, which we will soon discuss. After
5 seconds, we make a 360 degree turn, which is exactly 2π radians. Between 7 and
10 seconds, we pan our view by 500 meters on the randomly generated axis, while
between 10 and 12 seconds, we pan it back to its original place.

Next, we define our custom easing function:

ol.easing.parachuate = function (t) {
 return 1 - Math.pow(1 - t, 7);
};

The basic ol.easing.easeOut function is similar to custom easing function;
however, it brings the inverted argument to its third power, making the slowdown
faster. We slow down the effect drastically by bringing the inverted argument to its
seventh power.

As you may have noticed already, we didn't make an effort to pan our
view from our imaginary rocket's launch site to its landing place. This is
why we included a built-in pan animation along with a custom landing
animation in our control.

Finally, we include the control to the map and change the base layer back to
OpenStreetMap:

var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM({
 wrapX: false
 }),
 name: 'OpenStreetMap'
 }),
 […]
 controls: [
 […]
 new ol.control.RocketFlight()
 […]
});

Chapter 6

[169]

Now, if you save the code and open it, you can fly to my campus from any location.

For the best experience, start it from a high zoom level!

Summary
Congratulations! You just created your first and very own animation in OpenLayers
3, strictly based on various mathematical functions, proving that you are capable
of efficient algorithmic thinking. In this chapter, you learned how to manage your
map's view in various ways with some GUI widgets. You learned how to navigate
through the map efficiently, zoom to various extents, and most importantly, how to
implement new projections and switch between them correctly.

In the next, chapter, we will discuss how rendering, and renderers work in
OpenLayers 3. We will see, why we should not use the DOM renderer, and what are
the main strengths, and weaknesses of the far more efficient Canvas, and WebGL
renderers. After we have learned how to use those renderers properly, and what are
the main pitfalls we must overcome, we will learn how to do some basic, and more
advanced image manipulations with the Canvas renderer.

[171]

Mastering Renderers
In the previous chapters, we learned how to create custom controls, and manage the
view effectively, but we still don't know how rendering works in OpenLayers 3. In
this chapter, we will discuss this subject in greater depth. In order to create a well-
optimized, responsive application, we must know how rendering works and how we
can make rendering-related considerations for different use cases.

In this chapter, we will cover the following topics:

• Differences between the DOM, the Canvas, and the WebGL renderers
• Limitations of the WebGL renderer
• Operations carried out with the map canvas using the Canvas renderer
• Using raster operations independently from the renderer

Before getting started
In the previous chapter, we finalized our sample WebGIS application. That's it; we
won't extend it anymore in this chapter or in future chapters. As we later need to
create some controls for different operations, we go back to our layer tree model
from Chapter 3, Working with Layers. We will use the ch03_layerorder example as
our starting point and customize it later according to our needs.

We will not use any third-party library in this chapter; however, we need a large
dataset so that we can try out the capabilities of the WebGL renderer. This dataset
can be located in the res folder. It's name is switzerland_points_osm.geojson,
and it contains 221,291 point features from the OpenStreetMap database.

Mastering Renderers

[172]

Using different renderers
As you may already know, there are three different renderers in OpenLayers 3. The
DOM renderer is a legacy method that supports pre-HTML5 browsers. The main
limitation of this renderer is that it cannot display vector layers. Vector layers are
rendered using a canvas if the DOM renderer is used. Only tile and image layers
are created as separate DOM elements. If you must support legacy browsers, which
cannot use the canvas element, OpenLayers 2 is a better choice for you as it supports
SVG and VML rendering.

The second one is the Canvas renderer, which is the default. It draws every layer
separately on a single canvas element, outperforming its predecessor. For now,
we don't have to know anything specific about canvas elements; we will see the
possibilities of canvas manipulation in further examples.

The third one is a cutting-edge technology called WebGL. WebGL is the browser
implementation of OpenGL, making browsers capable of hardware-accelerated
rendering. The technology is widely used in client-side 3D applications, but it can
drastically increase the rendering performance of OpenLayers 3 too. This renderer
has some limitations, which we will see later in this chapter.

Do not expect too much from the WebGL renderer. OpenLayers 3 is
only capable of 2D rendering, and even the WebGL renderer cannot
change this behavior.

Creating a WebGL map
In the first example, called ch07_webgl, we will create our first WebGL map. We
bring our application to its limits, displaying more than 200,000 points on a single
map. If you haven't performed this test already, you must be thinking that the
magnitude of features will render our application totally unresponsive and useless.
Let's make an attempt to perform this test, though. For this example, we only have to
modify our map constructor using our new vector layer and the WebGL renderer:

var map = new ol.Map({
 target: 'map',
 layers: [
 […]
 new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),

Chapter 7

[173]

 url: '../../res/switzerland_points_osm.geojson',
 attributions: [
 new ol.Attribution({
 html: 'Switzerland Points © OpenStreetMap
Contributors'
 })
]
 }),
 name: 'Switzerland Points'
 })
],
 […]
 view: new ol.View({
 center: [910000, 5900000],
 zoom: 9
 }),
 renderer: 'webgl'
});

If you save the example and load it in a browser, you will be able to take a look at
all the points that are rendered after some processing time. The map is quite hard to
handle on lower scales; however, it is still manageable. When we zoom in and out on
higher scales, the map becomes responsive again:

Mastering Renderers

[174]

Be patient when you load the example. The library has to parse a lot of
points; thus, it will need some time.

The only reason our application didn't freeze was due to the utilization of the GPU
via the WebGL renderer. With proper hardware acceleration, we can display bigger
datasets with acceptable performance.

There is only one serious limitation of this renderer: it cannot draw lines or polygons.
The library will support such rendering methods over time; however, using vector
lines and polygons are currently not supported. Furthermore, if we try to use line
and polygon datasets with the WebGL renderer, the application will throw an error
and stop running.

Drawing lines and polygons with WebGL
In the previous example, we stated that OpenLayers 3 cannot render lines and
polygons with the WebGL renderer. However, there is a workaround, which we will
use in this example, called ch07_webgl_vector.

Let's add the country boundaries layer with a little twist to our map:

var map = new ol.Map({
 […]
 new ol.layer.Image({
 source: new ol.source.ImageVector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_countries.geojson',
 attributions: [
 new ol.Attribution({
 html: 'World Countries © Natural
Earth'
 })
]
 })
 }),
 name: 'World Countries'
 })
],
[…]

Chapter 7

[175]

As you can see, we converted our vector layer to an image layer. The ol.source.
ImageVector class takes a legal vector source as input and renders it as a set of
images. The class creates internal canvas elements for the provided or default
resolutions, draws the underlying vector data on them, and exports their content as
images. From there, the vector layer can be used and rendered as a regular image
layer. This way, the WebGL renderer can easily handle the underlying shapes
without knowing how to render lines and polygons:

With this little trick, you can use any shape with the WebGL renderer. However, there
are two things you should note. First, converting a vector layer to an image layer does
not increase the application's performance noticeably when used with big datasets.
Furthermore, the line and polygon-based features, like the draw interaction, will still
not work with WebGL. If you need to use them, you have to reinvent the wheel and
implement them in such a way that they are forced to use an image vector source.

OpenLayers 3 cannot wrap image vectors on the x axis. Furthermore,
they will be a little blurry when they're rendered, which is the result of
the image conversion. However, when they're rendered with WebGL,
you won't see the difference as only the Canvas renderer can draw
sharp shapes.

Mastering Renderers

[176]

Blending layers
In the next three examples, we will fall back on the Canvas renderer. It is the most
developed and stable one, providing a lot of perks by allowing canvas manipulation
methods. The map and every layer is rendered on a different canvas, while in the
end, they are aggregated into a single composition. This pattern, the existence of
precompose, and the postcompose events (rendering hooks) enable us to manipulate
the context of any layer or the map as a whole. We can basically use any canvas
manipulation method as long as we can get the original context of the layers or map
with these events.

In this example, called ch07_blend, we will discuss one of the most useful canvas
manipulation methods, the globalCompositionContext. For this example, we
modify our layer tree's createRegistry method, and add some blending options to
every registered layer:

var layerTree = function (options) {
 […]
 this.createRegistry = function (layer, buffer) {
 […]
 layerControls.appendChild(document.createElement('br'));
 var blendMode = document.createElement('select');
 blendMode.appendChild(this.createOption('source-over'));
 blendMode.appendChild(this.createOption('lighten'));
 blendMode.appendChild(this.createOption('darken'));
 blendMode.appendChild(this.createOption('multiply'));
 blendMode.appendChild(this.createOption('difference'));
 blendMode.addEventListener('change', function () {
 if (layer.get('blendMode')) {
 ol.Observable.unByKey(layer.get('blendMode'));
 layer.unset('blendMode');
 }
 layer.set('blendMode', layer.on
('precompose', function (evt) {
 evt.context.globalCompositeOperation =
blendMode.value;
 }));
 _this.map.render();
 });
 layerControls.appendChild(this.stopPropagationOnEvent
(blendMode, 'click'));
 […]

Chapter 7

[177]

We create a select element for a limited number of blending options. When we
change the element's value, we remove the current event listener, if we have one,
and then register a new listener on the layer's precompose event. In the listener, we
simply change the canvas element's context globalCompositeOperation property.

The default composite operation is source-over. You can
find a description for every valid operation on the MDN site at
http://developer.mozilla.org/en-US/docs/Web/API/
CanvasRenderingContext2D/globalCompositeOperation.

Remember: only one composite operation can be used on a single canvas. Because
of the rendering pattern of OpenLayers 3, we can apply a different operation on
every layer. However, the library keeps the last operation for every layer from there.
Due to this phenomenon, we should explicitly define an operation for every layer.
This can be done by registering a listener with the default value (source-over) in
every layer that's added to the map or leaving the whole process to the users for the
purpose of experimenting.

If you load the example, you can experiment with blending methods too. For a better
experience, you can change or extend the blending options with the help of more
legal operations, load more layers, and try to create complex compositions:

http://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation
http://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation

Mastering Renderers

[178]

Clipping layers
In the next example, called ch07_clip, we will use another useful canvas operation.
We will use a clipping mask to restrict a layer to a small square, creating a peeking
window, just like the one in the Google Maps application.

There are way more canvas operations than those described in the
examples. However, I tried to pick out the most useful ones for web
mapping applications.

For this example, we extend our init function with a custom layer. We register the
required precompose and postcompose events on it, and then silently add it to the
map:

var clippedLayer = new ol.layer.Tile({
 source: new ol.source.MapQuest({
 layer: 'osm'
 }),
 zIndex: 9999
});
clippedLayer.on('precompose', function (evt) {
 var ctx = evt.context;
 ctx.save();
 ctx.beginPath();
 ctx.rect(20, 20, 100, 100);
 ctx.clip();
});
clippedLayer.on('postcompose', function (evt) {
 evt.context.restore();
});
clippedLayer.setMap(map);

You can provide a zIndex property for any layer. If it is not 0, it alters
the rendering order of the layer, ignoring the layer order. For this
example, we provide an arbitrary high number; therefore, the clipped
layer (the peeking window) will be always the top layer.

The trick of clipping a context is this: we save the context and then draw a rectangle.
First, we begin a path. Next, we define the position of the rectangle relative to the
top-left corner of the canvas in the first two arguments. In the second two arguments,
we define the width and the height of the rectangle, respectively. Instead of drawing
the rectangle on the canvas by calling the stroke or fillRect methods, we convert
the path to a clipping mask using the context's clip method.

Chapter 7

[179]

When the layer is drawn (the postcompose event), we restore the saved context,
disabling the clipping mask for every other layer. If we skip this step, the entire map
is clipped to the defined mask.

If you load the example, you can see our peeking window showing a MapQuest
layer over our base map:

Most of the canvas operations are can be achieved with the WebGL
renderer too (except for blending). However, manipulating the map
via WebGL requires adequate expertise in OpenGL programming.

Exporting a map
The third useful canvas operation we will discuss is saving the content of the
canvas as an image. As you may already know, traditionally, files can be saved by
downloading them from a server. There are serious security considerations behind
the restriction of saving anything to the hard drive that's created on the client side.
However, there is no restriction in displaying a dynamically created image.

Mastering Renderers

[180]

In this example, called ch07_print, we will create a control that dynamically creates
an image based on the map canvas's context and opens it in a new tab. This way, we
can download the image just like any other plain image from a web page. First, we
will create a new control to save map states:

ol.control.Print = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = options.class || 'ol-print ol-unselectable
ol-control';
 var controlButton = document.createElement('button');
 controlButton.textContent = options.label || 'P';
 controlButton.title = options.tipLabel || 'Print map';
 var dataURL;
 controlButton.addEventListener('click', function (evt) {
 _this.getMap().once('postcompose', function (evt) {
 var canvas = evt.context.canvas;
 dataURL = canvas.toDataURL('image/png');
 });
 _this.getMap().renderSync();
 window.open(dataURL, '_blank');
 dataURL = null;
 });
 controlDiv.appendChild(controlButton);
 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
};
ol.inherits(ol.control.Print, ol.control.Control);

The control is very simple. If we push the button, it registers a one-time listener to
the map object and converts the content of its canvas to a png image. More precisely,
it converts it to a Base64 encoded URL of the png image, which can be opened by
browsers, just like regular websites. After we have the URL, we call a synchronous
rendering frame, making sure that the event occurs before we try to open our image.
Finally, we simply open our image in a new tab.

When you try to open something in a new tab or window from
JavaScript, your browser will most likely think that it's a popup and try
to block it. As we work from a local server now, this problem does not
occur, however, when you have to deploy such a feature, you should
consider this behavior.

Chapter 7

[181]

Next, we modify our map constructor a little bit. We deploy two new layers, adjust
their views, and add our new control:

 map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {
 layers: 'ned',
 format: 'image/png'
 },
 wrapX: false,
 crossOrigin: 'anonymous'
 }),
 name: 'Elevation'
 }),
 new ol.layer.Tile({
 source: new ol.source.TileWMS({
 url: 'http://demo.opengeo.org/geoserver/wms',
 params: {
 layers: 'nlcd',
 format: 'image/png'
 },
 wrapX: false,
 crossOrigin: 'anonymous'
 }),
 name: 'Land Cover'
 })
],
 controls: [
 […]
 new ol.control.Print({
 target: 'toolbar'
 })
],
 view: new ol.View({
 center: [-8604363.40000572, 4741541.738586053],
 zoom: 9
 })
});

Mastering Renderers

[182]

As you can see, we used an extra property when we constructed the layer objects.
The crossOrigin property is very important if we want to access the pixel values
of the canvas. This is also a security consideration that does not let us manipulate
or export the content of a canvas if we have used a non-CORS image at any point in
time. To mark the images of a layer as cross origin, we only have to set the layer's
crossOrigin property to anonymous. If we do not implement this step, we end up
with a tainted canvas, which we cannot export.

If you save the example and load it up, you can open the map's content in the form of
a picture in a new tab:

Creating a raster calculator
Now that we are familiar with some of the most useful canvas manipulation
methods, let's take a look at a renderer that is independent of any image
manipulation. There is a very useful source object in the library that can take
multiple sources as input and create a new image based on the provided operations.
In this example, called ch07_rastcalc, we will use the ol.source.Raster class to
build a basic RasterCalculator function.

Chapter 7

[183]

Raster 101
To understand the limitations of raster manipulation in OpenLayers 3 or, basically,
any web mapping application, we should discuss how rasters work in GIS. If you
are familiar with the concept, you can skip this part. If not, this section can give
you some basic, but valuable, information, which can help you evaluate better
architectural patterns.

First of all, every raster can be translated to a simple matrix. Rasters have a resolution
and consist of uniform cells. Therefore, if we know the resolution of a raster, we
can handle the underlying data as a matrix, which we can also place in a coordinate
reference system if we know the coordinates of one of its corners. Traditionally,
this corner is the lower-left one. A raster can only contain one value for every cell it
contains. This value can represent anything from elevation to any sort of statistical
data. This type of value must be numeric but the subtype is not specified (although it
must be uniform for the entire raster).

The main problem when working with rasters in browsers is that browsers can only
think in the RGB color space. A browser cannot interpret raster data in its natural
form; therefore, map servers convert rasters to a well-recognized RGB format (such
as png, jpeg, or gif) and send images in these formats to the client. This way, we
can only access the converted RGB values for every pixel of the raster, and without
knowing the transformation method exactly, we cannot transform them back to
their original values. We can transform them to single band values, making raster
calculations possible and showing visually appealing results, but they will not
represent the truth.

To sum it up, we can make raster calculations possible in the browser. However,
as we do not know the original values by default, just the transformed RGB values,
our transformations can only be proportionally correct. This can yield to visually
appealing results, but the calculations can only be used to create previews. We can
create a preview for an otherwise resource-intensive server-side calculation, thus
making users not load the server when the result is clearly dissatisfying.

Mastering Renderers

[184]

Operating with pixels
For this example, we will build a static calculator control. This control picks out
shades of red from the first map (urban areas in the land classification layer) and
keeps the second layer (elevation) only according to the pixels of first layer. In
simpler terms, we will mask the elevation layer with the urban areas of the land
classification layer. First, we will create the basics of our new control:

ol.control.RasterCalculator = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = options.class || 'ol-rastercalc ol-
unselectable ol-control';
 var controlButton = document.createElement('button');
 controlButton.textContent = options.label || 'R';
 controlButton.title = options.tipLabel || 'Calculate Raster';

Next, we have to write a filter function that checks an input pixel from the mask
layer, and if the criteria for this pixel is met, it returns the pixel value of the second
layer. If not, it sends back a fully transparent pixel:

 var filterPixel = function (pixels) {
 var inputPixel = pixels[0];
 var maskPixel = pixels[1];
 if (maskPixel[0] > maskPixel[1] && maskPixel[0] >
maskPixel[2] && Math.abs(maskPixel[1] - maskPixel[2]) < 25) {
 return inputPixel;
 }
 return [0, 0, 0, 0];
 };

The value of 25 for the absolute difference in green and blue values is a
sensitive default. If you set it to 50 or 100, brownish colors will also get
picked.

Next, we add an event listener to the button. If we click on it, our control creates a
new layer with a raster source and calculates the layer based on two input layers:

 controlButton.addEventListener('click', function (evt) {
 var layer = _this.getMap().getLayers().item(0);
 var mask = _this.getMap().getLayers().item(1);
 if (layer && mask) {
 var raster = new ol.source.Raster({
 sources: [layer.getSource(), mask.getSource()],

Chapter 7

[185]

 operationType: 'pixel',
 operation: function (pixels, data) {
 return filter(pixels);
 },
 lib: {
 filter: filterPixel
 }
 });
 _this.getMap().addLayer(new ol.layer.Image({
 source: raster,
 name: 'Urban elevation'
 }));
 }
 });

For the raster source, we have to provide an array of source objects. If we set the
operationType attribute to pixels, we will get an array for the operation function
with the overlapping pixel values of every provided source. The lib property is
optional; however, it is utterly useful. We can separate the most resource-intensive
calculations in separate functions and define them in the lib object. OpenLayers 3
can thread these functions via web workers but only if they are defined.

You can refer to a function provided in the lib object with any function
name in the operation function until it is mapped out correctly.

Finally, we finish our control with some routine commands and include it in our
map constructor:

 controlDiv.appendChild(controlButton);
 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
};
ol.inherits(ol.control.RasterCalculator, ol.control.Control);
[…]
var map = new ol.Map({
 […]
 controls: [
 […]
 new ol.control.RasterCalculator({
 target: 'toolbar'
 })
 […]
});

Mastering Renderers

[186]

If you save the code and try it in a browser, you will see our raster calculator in
action. You can also try to perform more complex calculations on input images:

Creating a convolution matrix
In the next example, called ch07_convolution, we will implement a control, which
can apply a filter on a single image. We will hardcode a Sobel filter for this example;
however, based on the implementation, you will be able to use any kind of filter,
even dynamically. Our implementation will have three stages:

• Converting the image to grayscale
• Applying the Sobel filter
• Normalizing the image

Chapter 7

[187]

How convolution works
Before creating the control, let's discuss how convolution works in a nutshell. When
we convolve an image, we calculate some sort of statistics from the image matrix
that is based on every pixel's (or raster's) neighborhood. This is why this method is
also referred to as focal statistics or a moving window in geoinformatics. There are
two things we need to convolve an image: the pixel data arranged in a matrix and a
small matrix with weights in it, which is called a kernel. We apply the kernel to every
cell in our image and calculate its new value based on the values of its neighbors
multiplied by the corresponding kernel value:

After the operation, we will have a matrix that is equal to the size of the kernel. The
matrix contains the values of the original pixel and its neighborhood, which are
weighted by the kernel values. If we add these values, we will get the new value for
our current cell. The preceding kernel is the horizontal part of a 3 x 3 Sobel filter.

Converting an image to 8-bit
There are tons of cases where applying a convolution matrix to an RGB image just
does not work out. In raster calculations or raster algebra, we operated on single band
images of various types. This is also the case with the Sobel filter. As it detects edges
(that is, the vertical and horizontal changes in pixel values), the easiest and most
appropriate way is to clamp our image to a single 8-bit band. Of course, sometimes,
storing values in a single byte is just not enough; in such cases, you can create a
temporal array with appropriate values. First, we will create the control button:

ol.control.Convolve = function (opt_options) {
 var options = opt_options || {};

Mastering Renderers

[188]

 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = options.class || 'ol-convolve ol-
unselectable ol-control';
 var controlButton = document.createElement('button');
 controlButton.textContent = options.label || 'C';
 controlButton.title = options.tipLabel || 'Convolve bottom
layer';

Next, we will define a function in the control, which converts an input RGB matrix to
an 8-bit one with the help of an averaging method:

 var toGrayScale = function (inputArray) {
 for (var i = 0; i < inputArray.length; i += 4) {
 var grayScaleValue = (inputArray[i] + inputArray[i +
1] + inputArray[i + 2]) / 3;
 inputArray[i] = grayScaleValue;
 inputArray[i + 1] = grayScaleValue;
 inputArray[i + 2] = grayScaleValue;
 }
 };

As we only change one pixel at a time, we can overwrite the original values of the
provided array. Rounding is not necessary in this case as we operate on typed arrays,
which we will see in detail later in the chapter. There is only one consideration that
we have to make. As browsers can only think in the RGB color space, we must assign
the calculated value to every color band. This way, we end up in a grayscale image.
We step our loop with a value of 4 because we get a simple array containing every
pixel's RGBA (red, green, blue, and alpha) values in the correct pixel order.

There are two more well-known methods to convert an RGB image
to an 8-bit image (desaturating). The first one is called the lightness
method, which averages the biggest and smallest value from an RGB
pixel. The second one is called the luminosity method, which weighs
the values based on the color sensitivity of our eyes. The formula in
this case is 0.21 * R + 0.72 * G + 0.07 * B.

Chapter 7

[189]

Implementing the Sobel filter
Next, we create a function in our control that applies the Sobel filter to an input pixel
and returns its new edge detected value:

 var applySobel = function (inputArray, index, width) {
 var nh = [inputArray[index - width - 4],
 inputArray[index - width],
 inputArray[index - width + 4],
 inputArray[index - 4],
 inputArray[index],
 inputArray[index + 4],
 inputArray[index + width - 4],
 inputArray[index + width],
 inputArray[index + width + 4]];
 for (var i = 0; i < nh.length; i += 1) {
 if (nh[i] === undefined) {
 nh[i] = inputArray[index];
 }
 }
 var hFilter = nh[0] + 2 * nh[1] + nh[2] - nh[6] - 2 *
nh[7] - nh[8];
 var vFilter = nh[2] + 2 * nh[5] + nh[8] - nh[6] - 2 *
nh[3] - nh[0];
 var pixelValue = Math.sqrt(Math.pow(hFilter, 2) +
Math.pow(vFilter, 2));
 return 255 - pixelValue;
 };

Our function accepts three parameters. We must grab a reference to the array first as
we have to know the values of the input pixel's neighbors. Secondly, we request the
current index, which describes the position of our current pixel. Finally, we need a
width parameter, also referred to as a stride, which is the numeric representation of
the width of the image. This number tells us how many pixels we need to go forward
or backward in order to get a pixel above or below our input pixel.

As we have every parameter needed to locate the current pixel's neighborhood, we
can set up a temporal array, representing the matrix, which we will weight with a
kernel. The Sobel filter has two kernels: one for horizontal edge detection and one for
vertical edge detection. In this example, we will hardcode the weighting for the sake
of simplicity.

Mastering Renderers

[190]

There is one interesting problem we have to deal when we use a convolution matrix.
On the edges of the image, we cannot grab a reference to every pixel in the kernel.
There are several methods we can use in this particular case. We can shrink the
image by n – 2, where n stands for the size of the kernel; however, this method
is not simple, especially with OpenLayers 3. Alternatively, we can extrapolate our
image, which is easier to implement. In our simple implementation, we do not
extrapolate those values properly that are based on the whole neighborhood; we just
default it to the current pixel value.

The last step of calculating the final value of the pixel is getting the geometric mean
of the two filter values. This will automatically clamp our value to a byte range.
Rounding off the value is still not necessary as the typed array will do this for us
automatically.

Inverting the color of the result is optional. We only do this because black
edges on a white background is more visually appealing.

Normalizing an image
When the pixel values are finely distributed, the result (display model) is visually
appealing. We have a black contour on hard edges and a white representation on
homogeneous pixels. However, as we can zoom into the image, this will not be the
case on higher zoom levels. On a subset of the image, we can have only soft edges,
and if we do not normalize the image, we will barely see them or won't see them at
all. The normalization process stretches out the resulting pixel values to a predefined
interval; in our case, this is from 0 to 255:

 var normalizeImage = function (inputArray, min, max) {
 for (var i = 0; i < inputArray.length; i+=4) {
 var newIntensity = (inputArray[i] - min) * 255 / (max
- min);
 inputArray[i] = newIntensity;
 inputArray[i+1] = newIntensity;
 inputArray[i+2] = newIntensity;
 }
 };

In this example, we use a linear normalization method, which is the easiest to
implement. There are some cases, however, when a normalized image with a
linear method does not reflect the truth. If there is a nonlinear correlation between
the image and the display model, you should use a more complex normalization
method.

Chapter 7

[191]

For a more dynamic application, you should implement some different
normalization algorithms, map them to a control, and let the users
decide which one is the most adequate for them.

Finalizing a control
In the final step, we add an event listener to the control button, which creates a new
raster layer and applies the Sobel filter to it:

controlButton.addEventListener('click', function (evt) {
 var layer = _this.getMap().getLayers().item(0);
 if (layer) {
 var raster = new ol.source.Raster({
 sources: [layer.getSource()],
 operationType: 'image',
 operation: function (image, data) {
 var imageData = image[0];
 var inputArray = imageData.data;
 toGrayScale(inputArray);
 var outputArray = new
Uint8ClampedArray(inputArray);
 var min = Infinity, max = -Infinity;
 for (var i = 0; i < inputArray.length; i += 4)
{
 var edgeValue = calculateValue(inputArray,
i, imageData.width * 4, imageData.height);
 outputArray[i] = edgeValue;
 outputArray[i + 1] = edgeValue;
 outputArray[i + 2] = edgeValue;
 min = outputArray[i] < min ? outputArray[i] :
min;
 max = outputArray[i] > max ? outputArray[i] :
max;
 }
 normalizeImage(outputArray, min, max);
 return new ImageData(outputArray, imageData.width,
imageData.height);
 },
 lib: {
 calculateValue: applySobel,
 toGrayScale: toGrayScale,
 normalizeImage: normalizeImage
 }

Mastering Renderers

[192]

 });
 _this.getMap().addLayer(new ol.layer.Image({
 source: raster,
 name: 'Sobel filter'
 }));
 }
 });
 controlDiv.appendChild(controlButton);
 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
};
ol.inherits(ol.control.Convolve, ol.control.Control);

The process resembles the one described in the previous example; however, we now
use the image operation type. There is a fundamental difference between the two
operations. When we use a pixel type, we get one pixel value for every provided
layer at a time, but in the case of image type, we get the whole image matrix for
every provided layer at once.

As we use an image type operation, we get the whole image data, which is a
JavaScript ImageData type object. The object contains the matrix of the image in
its data property. The matrix is a little tricky as it must be a typed array. Typed
arrays in JavaScript are low-level interfaces, granting access to real arrays stored
in the memory. These arrays are the ones you are used to if you have used some
lower-level languages, such as C. They are raw binary data whose content depends
on the interpretation. To interpret these arrays, JavaScript offers some typed array
constructors, such as 8, 16, or, 32-bit integer arrays or 32 and 64-bit floating point
arrays. ImageData must contain Uint8ClampedArray more explicitly, which is an
8-bit unsigned integer array.

You can learn more about typed arrays in JavaScript on the MDN
website at http://developer.mozilla.org/en-US/docs/
Web/JavaScript/Typed_arrays.

http://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

Chapter 7

[193]

In the raster operation, we convert the input array to grayscale. We can overwrite
that array as the original RGB values of the input image can be discarded. For the
output array, however, we must create a new array based on the grayscale one.
As the convolution must be made on the original values, we must not make the
modifications in place of original values. While we calculate the new values for our
convolved image, we also store the minimum and maximum values of the current
view: our image's range.

There are several valid use cases of the Infinity and -Infinity
numeric types. One of them is when you want to initialize a counter
with arbitrary high or low numeric starting values, which will be
certainly overwritten by real numbers.

When we are done with the convolution, we normalize the image in place with the
stored minimum and maximum values. Note that if you would like to create a GUI
option to change the normalization algorithm, this operation should not overwrite
the result. Next, we can return our new, modified image. This must be done with an
ImageData object, which must contain the image's dimensions.

As seen in the previous example, we provide every external function that's used in
the raster operation in the source's lib property. Finally, we construct our map with
our new control in it. We also change the base layer to OpenStreetMap in order to see
nice, sharp edges:

var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM(),
 name: 'OpenStreetMap'
 })
],
 controls: [
 […]
 new ol.control.Convolve({
 target: 'toolbar'
 })
 […]
});

Mastering Renderers

[194]

If you save the code and use our new tool, you will see how edge detection works
with the Sobel filter:

With a layer that has sharp edges, such as a categorized one,
normalization of the result is often unnecessary. However, when you
convolve a gradually changing layer, such as a Digital Elevation Model
(DEM), the normalization process suddenly becomes indispensable.

Clipping a layer with WebGL
In the last example, called ch07_clip_webgl, we will go through some of the key
aspects of working with WebGL and OpenLayers 3. WebGL is an exceptionally
rich JavaScript port of OpenGL, which is capable of performing advanced 3D GPU
calculations. However, as the OpenLayers 3 library already uses it and parameterizes
it, when we use the WebGL renderer in the precompose and postcompose rendering
hooks, we have only a limited number of possibilities. For example, OpenGL can
automatically blend textures into each other with some blending options. However,
as OpenLayers 3 already uses this capability in order to draw the layers on each
other with a possible transparency option, we cannot change the global blending
property without messing up the entire rendering process.

Chapter 7

[195]

Clipping, or in this case, masking parts of a layer, is a possible WebGL operation
with the library. Our goal is identical to the previous clipping example: we create a
100 x 100 pixels peeking window, which displays a silently added layer above our
other layers.

This part can be considered as a bonus example, in which, we will
learn about some of the fundamental aspects of WebGL programming.
Unfortunately, covering the entire basics of WebGL is out of the scope of
this book. There are great sources on the Internet if additional reference is
needed. One of the greatest tutorials out there can be found at http://
webglfundamentals.org/.

When we operate with WebGL, we have to deal with two entirely different concepts.
First, we need some OpenGL programs, which are transferred and run by the
GPU. If we have our programs up and running, we can parameterize them and
communicate with them through JavaScript. In JavaScript, we can set global flags
and attributes, and send shapes (primitives), colors, textures, and other things to the
GPU for rendering.

Learning WebGL can be difficult if you are used to OOP. If a concept
is unclear in the example, research on it before moving on in order to
understand it better. Remember: knowing the basics of WebGL can
really pay off in the field of frontend development.

Writing programs
There are two kinds of programs we can create with WebGL. The first one, the
vertex shader, is a vector program, which is responsible for drawing shapes based
on vector coordinates. The second one, called fragment shader, is a raster program.
It defines the color of the drawn shapes. In this example, we do not need to color the
mask; therefore, our fragment shader is an empty function, although, we can define
the precision of our calculations. In OpenLayers 3, the default precision is medium
because it is sufficient for texture rendering; however, if we need to create a high-
precision WebGL extension, we can define it as precision highp float:

var fragmentShaderSource = [
 'precision mediump float;',
 'void main() {',
 '}'
].join('');

http://webglfundamentals.org/
http://webglfundamentals.org/

Mastering Renderers

[196]

As you can see, when we provide a program, we have to write it as a
single string in the language of OpenGL (GLSL), which is similar to the
C language. Unlike JavaScript, this language is strongly typed; therefore,
make sure that you always work with the right type when you create or
assign variables.

Next, we create the vertex shader program, which is a little more tricky. First, we
have two variables: one for the position of the current drawing (cursor) and the other
for the resolution of the canvas. The resolution is very important as OpenGL uses
a clipping space when it draws on the canvas, which ranges from -1 to 1. It is DPI-
independent, and as we would like to define our peeking window in pixels, rather
than in percentage values, we have to convert the absolute pixel values that we will
provide to the clipping space values:

var vertexShaderSource = [
 'attribute vec2 a_position;',
 'uniform vec2 u_resolution;',
 'void main() {',
 ' vec2 pixelPos = a_position / u_resolution * 2.0 - 1.0;',
 ' gl_Position = vec4(pixelPos, 0, 1);',
 '}'
].join('');

Variables in GLSL are similar to C declarations. There are, however, qualified
variables with special meanings. From the four types (const, attribute, uniform,
and varying), we've used two. A variable with the attribute qualifier can only
be used by the vertex shader, and it is read only by the shader. It can be modified
between drawing vertices; therefore, it is great for the updating of the position of the
cursor. Variables with the uniform qualifier can be used by both of the shaders but
can only be updated between drawing primitives. This peculiarity makes this type
suitable for us to store the resolution of our canvas.

Only qualified GLSL variables can be updated from JavaScript.

This conversion is a three-step task. First, we divide the pixel position by the
resolution of our canvas, getting a value between 0 and 1. Then, we stretch the
interval to 2 by multiplying the value. Finally, we clamp the stretched interval
between -1 and 1 (the clipping space) by subtracting 1 from the result. Next, we
update the position of the OpenGL cursor with our calculated clipping space
position, and we're finally done.

Chapter 7

[197]

Note that we have to provide the OpenGL programs in a string format.
This can be done by concatenating the lines of the program, but the
official OpenLayers 3 WebGL clipping example provided a nice, more
readable method for this purpose, which we could adapt. This method
uses an array of lines and concatenates them right after the array is filled
with content.

Creating a clipping mask
Now that we have some programs for OpenGL, we can proceed and use them to
clip our layer. The procedure starts similarly to the previous clipping example. We
create a layer and register some events to its rendering hooks. The only significant
difference is that we use WebGL methods to clip the layer this time. First, we create
the layer:

var clippedLayer = new ol.layer.Tile({
 source: new ol.source.MapQuest({
 layer: 'osm'
 }),
 zIndex: 9999
});

Next, we attach a precompose event to it. Before the layer is drawn on the canvas,
we initialize our mask using a WebGL stencil. First things first: we construct some
proper shader programs from the program strings, create a WebGL program, and
attach the shaders to it. We also link our complete program to the context:

clippedLayer.on('precompose', function (evt) {
 var context = evt.glContext;
 var gl = context.getGL();
 var program = gl.createProgram();

 var vertexShader = gl.createShader(gl.VERTEX_SHADER);
 gl.shaderSource(vertexShader, vertexShaderSource);
 gl.compileShader(vertexShader);
 gl.attachShader(program, vertexShader);

 var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
 gl.shaderSource(fragmentShader, fragmentShaderSource);
 gl.compileShader(fragmentShader);
 gl.attachShader(program, fragmentShader);

 gl.linkProgram(program);
 context.useProgram(program);

Mastering Renderers

[198]

Next, we save the qualified variables of our vertex shader to JavaScript variables.
This operation asks for the memory space where these variables are stored. After
this, those memory spaces are mapped to JavaScript variables from where everything
is handled by the browser's JavaScript engine:

 var resolutionLocation = gl.getUniformLocation(program,
'u_resolution');
 gl.uniform2f(resolutionLocation, context.A.width,
context.A.height);
 var positionLocation = gl.getAttribLocation(program,
'a_position');

In the second line, we provide our canvas's width and height to the OpenGL
program as the resolution variable. Note that OpenLayers 3 does not expose the
canvas element when the WebGL renderer is used; it does this only when the canvas
renderer is in action. It is stored, however, and can be accessed from the context
object's A property.

OpenLayers 3 is compiled with the Closure Compiler, part of the Closure
Library. Therefore, no one can ensure that the canvas element will be
obfuscated to the A property of the context object in future versions.

Let's stop here a little bit and think about the second line. We spoke a little about
passing the resolution of the canvas to OpenGL, but we passed our canvas's height
and width. That's right; we do not use resolution in its cartographic or geoinformatic
meaning. We send the dimensions of our canvas to the GPU. Take a look at the
vertex shader again. The resolution variable is a vec2 type, which is a simple
numeric array with two members. As the clipping space ranges from -1 to 1 in every
dimension, we can only calculate the clipping space coordinates from the pixel
coordinates in one command in this way. As the position variable and result variable
have matching types, we can execute arithmetic operations on the entire arrays.
OpenGL will automatically iterate through them and perform the operations on the
corresponding members. In the next step, we initialize our stencil test:

 gl.enable(gl.STENCIL_TEST);
 gl.colorMask(false, false, false, false);
 gl.stencilOp(gl.KEEP, gl.KEEP, gl.REPLACE);
 gl.stencilFunc(gl.ALWAYS, 1, 255);

Chapter 7

[199]

We enable stencil testing, and set the color mask to false in every color band
(RGBA). We do this as we do not want to draw anything on the canvas; therefore,
we do not need the fragment shader to apply colors to our shapes. We only want to
create a square to mask some pixels. The stencil is initialized with a stencil operation
and a stencil function. The stencil operation needs to know what should be done in
the three different test results. If our stencil test fails, we will keep the original value.
If our stencil test passes but the depth test fails (there is a layer above the peeking
window), we will also keep the original value. Finally, if both of the tests pass, we
will replace the original value.

Now, we need a stencil function that determines the conditions under which the
stencil test can pass. In our case, the stencil test should be always passed when a
pixel is in the peeking window. The second argument is called the reference value.
It contains a value that is compared to every pixel if we use a comparison function
in the first argument. It also represents the replace value if we call gl.REPLACE in
our stencil operation. The third value is the mask. Both the reference and the original
values are bitwise AND-ed with it before comparison. As a direct comparison is
enough for us, we use a 255 mask value. After these operations, our stencil buffer
is initialized with a bunch of 0 values, and every pixel will get a 1 value from the
shapes using which we will draw from now on.

If you bitwise AND an 8-bit value with 255, you will get back the provided
8-bit value.

Next, we draw our rectangle, which will act as a stencil for the peeking window layer:

 var buffer = gl.createBuffer();
 gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
 20, 20, 120, 20, 20, 120, 120, 120
]), gl.STATIC_DRAW);

In OpenGL, when we want to provide an array of vertices or colors, we need to do
this with a vertex buffer. This is a simple typed array from the aspect of JavaScript,
containing the values of the provided data. First, we create an empty buffer. Then,
we link it to our program and fill it with values. This is another tricky part. We have
to create a square but as a primitive. However, only points, lines, and triangles can
be drawn as primitives in OpenGL. This way, we have to create an array with the
vertex coordinates of two triangles building a square.

Mastering Renderers

[200]

Now, things get a little interesting. If you look at the array, it does not contain six
pairs of coordinates, which would be required for three triangles; it only contains
four pairs. OpenGL can draw three kinds of triangles. If we have triangles with
shared line segments, we can draw triangle strips. This method allows code not
being redundant, and only pass the final point of the second triangle without
repeating the shared segment. Now, we draw our triangles:

 gl.enableVertexAttribArray(positionLocation);
 gl.vertexAttribPointer(positionLocation, 2, gl.FLOAT, false,
0, 0);
 gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

First, we turn on our cursor with the position attribute of our vertex shader. Next,
we set the metadata of our vertex buffer. The index will be stored in the position
attribute. The size of the coordinates is two (two dimensional coordinates); the type
of the coordinates is a floating point since they aren't normalized, and finally, their
stride and offset are 0. Now that OpenGL knows everything about our triangles,
we can instruct it to draw them.

As we have our stencil initialized at this point, the only thing we have to do is
prepare it to mask the pending content:

 gl.bindBuffer(gl.ARRAY_BUFFER, null);
 gl.deleteBuffer(buffer);

 gl.colorMask(true, true, true, true);
 gl.stencilFunc(gl.NOTEQUAL, 0, 255);
});

We remove the vertex buffer containing the vertices of our triangles as we do not
need it anymore. Next, we override the stencil function. From now on, we only keep
values that do not result in a 0 after the stencil test. Remember: in the square, every
value is 1; outside of it, every value is 0. Finally, we register an event listener to the
layer's postcompose event and add it to the map silently:

clippedLayer.on('postcompose', function (evt) {
 var context = evt.glContext;
 var gl = context.getGL();
 gl.disable(gl.STENCIL_TEST);
});
clippedLayer.setMap(map);

After the layer has been rendered, we simply disable the stencil testing, allowing the
library to properly render any other pending content. If you save the code and look it
up in a browser, you will see our peeking window rendered entirely with WebGL:

Chapter 7

[201]

As you can see, the peeking window is in the lower-left corner this time.
Unlike the 2D Canvas, OpenGL has a starting point in the lower-left
corner. If you need to place it in the upper-left corner, you have to invert
the y axis in the vertex shader.

Summary
Congratulations! You not only learned when it's appropriate to use the Canvas or
WebGL renderer but also how to create local modifications with the rendering hooks
of the library. You learned the basics of the 2D and 3D Canvas and also learned how
to use a renderer independent of pixel manipulation methods. We can definitely say
that if you can solve the problems lined up in this chapter, you have mastered the
renderers of OpenLayers 3.

In the next chapter, we will travel to a completely different part of the library and
learn how to create mobile-friendly web mapping applications. We will get the most
out of the geolocation capabilities of your smartphone and design a basic geocaching
application based on randomly generated data.

[203]

OpenLayers 3 for Mobile
Now that we are through with the hardest parts of this book, and you have mastered
a lot of very important aspects of the library, we will discuss an entirely different
concept of OpenLayers 3 in this chapter. We will create a geocaching application
that can be used on handheld devices and desktop computers too. We will write this
application from scratch and utilize some of the knowledge we just harnessed from
the previous chapters.

For those who don't know what exactly geocaching is, let's start with a brief
explanation. Geocaching is a great outdoor activity. A player needs two essential
things: a device with GPS and a database of geocaches. There are plenty of little
boxes hidden in Nature, marked with a point, and uploaded in a geocaching
database. The game is usually played as follows: the player picks a cache on the
device; if the location is found, the cache still needs to be located as it is usually well-
hidden. When the player finds the box, there is usually a notebook in it, along with
some trinkets. The player then can read the content of the notebook, write something
into it, take some of the items, or put something in the box. Finally, the player puts
the cache back to its original place and moves on.

In this chapter, we will discuss the following topics:

• Responsive web design with OpenLayers 3
• Using the HTML5 Geolocation API through the library
• Creating multipurpose web mapping applications

OpenLayers 3 for Mobile

[204]

Before getting started
As stated previously, we will write a brand new application in this chapter.
However, there are some general considerations we made in an early stage of our
learning. We will use these considerations and also the very simple code built with
them. In this chapter, we will use the final code, produced in Chapter 2, Applying
Custom Styles, called ch02_webgis, as a basis.

Basic considerations
One of the most challenging problems in responsive web design is detecting the type
of the client's device. There are several effective approaches such as adjusting the
style of the web page to the screen's dimensions with CSS media queries, or detecting
the type of the hardware from the navigator.userAgent property in JavaScript
(device detection). These methods are quite practical for a blog, news page, or
shopping page, but not effective in our case.

The goal of our application is to adapt to the different capabilities of handheld
and desktop computers. If we are working on a desktop computer, we will be
dispatchers, able to modify the locations and the attributes of the geocaches.
However, if we use a handheld device, we are geocachers and would like to have an
application that can help us find those caches.

As technology rapidly develops, it is hard to separate desktop devices from
handheld devices based on common attributes. For example, the dimensions of a
modern handheld device's screen in pixels surpass the dimensions of an old monitor.
Scanning for touch and orientation capabilities also yields false results, as nowadays
some of the modern laptops also have touch screens and built-in GPS receivers.
However, we do have to separate the two roles in a simple manner; thus, we make
this false assumption and nominate every touch device as a receiver and every
non-touch device as a dispatcher. This way, we can use feature detection to
issue roles.

Responsive styling with CSS
In the first example, called ch08_css, we will create the layout of our application.
We differentiate three styling methods. If the device is a desktop computer, we use
regular styling, as in Chapter 2, Applying Custom Styles. If we come through a touch
screen device, though, we use different rules for controls. Furthermore, we apply a
slightly different style to the application in portrait mode than in landscape mode.

Chapter 8

[205]

Firstly, we create the required elements in the HTML file in our example:

<body>
 <div id="map" class="map">
 <div id="toolbar" class="toolbar"></div>
 </div>
</body>

This part is more simple than ever before. However, in this case, we create our
toolbar inside the map element. We will discuss the importance of this step later in
this chapter.

Writing the style sheet
Now that we have our HTML elements in place, let's head to the CSS file in this
example. As you can see, we completely removed the map container from our
design, putting everything in the map element. This way, we have to size our map
element to have a full screen application:

.map {
 width: 100%;
 height: 100%; /*Fallback*/
 height: 100vh;
}

The rule for our tool bar is almost identical to the one used in Chapter 2, Applying
Custom Styles. However, as we place it on top of our map, we position it accordingly
and use an arbitrary high Z-index. This way, our control buttons won't get covered
up by the map canvas:

.toolbar {
 height: 2em;
 padding: .2em;
 position: absolute;
 z-index: 999;
}

For the control buttons, we stop displaying them as table elements as we do not
have to align them vertically anymore. Furthermore, we remove the distracting
background color from them:

.toolbar .ol-control {
 position: static;
 display: inline-block;
 padding: 0;
}

OpenLayers 3 for Mobile

[206]

.toolbar .ol-control {
 background-color: rgba(0,0,0,0);
}
.toolbar .ol-control button {
 border-radius: 2px;
 width: 2em;
 background-color: rgba(219,63,63,.5);
 display: inline-block;
}

Next, we define some touch screen-only rules. We handle touch screen devices by
adding an ol-touch class to the map element when we encounter one. As hovering
does not make sense on touch devices, we disable that feature:

.ol-touch .toolbar .ol-control button {
 background-color: rgba(219,63,63,0.5);
}
.ol-touch .toolbar .ol-control button:hover {
 background-color: rgba(219,63,63,0.5);
}

Remember the rule of specificity! As always, the most specific rule
applies; we can easily override the styling on touch devices by declaring
more specific rules for them.

Finally, we separate portrait styling from landscape styling with some media queries.
When we have a portrait orientation, we make the control buttons look similar to the
desktop styling, just bigger:

@media only screen and (orientation: portrait) {
 .ol-touch .toolbar {
 height: 2rem;
 }
 .ol-touch .toolbar .ol-control {
 height: 2rem;
 }
 .ol-touch .toolbar .ol-control button {
 width: 3rem;
 height: 2rem;
 }
}

Chapter 8

[207]

In OpenLayers 3, the em values change in full screen mode. However,
if we adjust the style to the root element by using rem values, we get
better results.

If we change our device's orientation to landscape, however, we make our controls
appear on the left-hand side as we have rotated the tool bar by 90 degrees clockwise.
This way, we create a feeling in the users that our controls cover up the least space
possible from the application:

@media only screen and (orientation: landscape) {
 .ol-touch .toolbar {
 width: 2rem;
 }
 .ol-touch .toolbar .ol-control {
 display: block;
 width: 2rem;
 }
 .ol-touch .toolbar .ol-control button {
 height: 3rem;
 width: 2rem;
 }
}

There are better ways and a lot of optimization methods in responsive
web design. Covering this topic is out of the scope of this book, though
there are other great and detailed literatures to learn from. Also,
optimizing the design for every browser is harder on smartphones
than desktop computers. Our code is only optimized for Webkit-based
browsers, such as Google Chrome, Opera, or Safari.

Constructing the map
As a final step, we construct our map object. It is simple, just like in Chapter 2, Applying
Custom Styles. The only modification lies in touch detection. OpenLayers 3 grants
some convenient browser feature detection methods in the namespace ol.has. One of
them can easily detect touch screen devices, which we will use in this chapter:

var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })

OpenLayers 3 for Mobile

[208]

],
 controls: [
 new ol.control.Zoom({
 target: 'toolbar'
 })
],
 view: new ol.View({
 center: [0, 0],
 zoom: 2
 })
});
if (ol.has.TOUCH) {
 document.getElementById('map').classList.add('ol-touch');
}

If we detect a touch screen, we add the ol-touch class to our map element, just like
we mentioned previously. Now, if you save the code and load it in a browser, you
will see our new design in action, as shown in the following screenshot. Don't forget
to check it with a smartphone (or a smartphone simulator) and a desktop computer
too:

Chapter 8

[209]

The only requirement for checking the code on your smartphone is
connecting to the same network as your server. You can query your
computer's IP from the command line of your OS. In Windows, you have
to type the ipconfig command on Linux type ip addr show; while
on OSX, you have to use the ifconfig command.

Don't worry about the small buttons in portrait mode and the address bar covering
up valuable map space in landscape mode. Our application will look great in full
screen mode, just after we implement it.

Simulating mobile devices is quite easy, you just need to know your
tools. In Google Chrome, you can select a touch device after enabling
emulation with the Toggle device mode button (smartphone icon) in
the developer tools. In Firefox, you can start emulating by clicking on the
Responsive Design Mode button in the dev tools and simulate touch
events after that. In Internet Explorer 11 or Microsoft Edge, though, you can
only change the user agent string, making those browsers inappropriate to
test web pages with feature detection, such as our application.

Generating geocaches
In the next example, called ch08_points, we create some random geocaches based
on the user's location. As server-side scripting and client-server connections are also
out of the scope of this book, we make our application viable by adding random
points within 500 meters of our position. Firstly, we create an empty layer for the
points and initialize Geolocation:

var geoloc = new ol.Geolocation({
 projection: map.getView().getProjection(),
 tracking: true
});
var geoCaching = new ol.layer.Vector({
 source: new ol.source.Vector()
});
map.addLayer(geoCaching);

OpenLayers 3 for Mobile

[210]

The ol.Geolocation constructor creates a simple wrapper object around the
HTML5 Geolocation API. It is capable of everything the Geolocation API can do,
and provides convenience methods to register listeners on changes and access
Geolocation-related information. As we need our position to generate local points,
we must register a listener to the Geolocation object's change:position event. As
we do not want our application to generate new points on every change, we do this
only once:

geoloc.once('change:position', function (evt) {
 var altitude = this.getAltitude() || 100;
 var myPos = this.getPosition();
 map.getView().setCenter(myPos);
 map.getView().setZoom(17);
 for (var i = 0; i < 50; i += 1) {
 geoCaching.getSource().addFeature(new ol.Feature({
 geometry: new ol.geom.Point([myPos[0] - 500 + Math.
random() * 1000, myPos[1] - 500 + Math.random() * 1000, altitude - 150
+ Math.random() * 300]),
 loot: 'Treasures of the Seven Seas'
 }));
 }
});

Firstly, we read out all useful information from the Geolocation object. Altitude
information will only be present if we have a GPS in our device and proper satellite
coverage. Therefore, we default our altitude to a predefined value if we cannot
extract it from the object.

Next, we center the map to the measured position, zoom in, and generate 50 random
points. As we want to generate points within a 500 meter radius of our location,
we calculate a position from a 1000 meter range with a random number. We also
calculate a random altitude for every point within the 150 meters from the measured
or the predefined altitude value. Finally, we provide a loot attribute just for fun.

You can provide two, three, or four values with every coordinate. Just
remember: you must be consistent in a single geometry object and in
the entire layer.

Chapter 8

[211]

If you save and load the example, you will see a map to the one in the following
screenshot. You will get the generated geocaches in your area. Just make sure that
the application can access your location:

Adding device-dependent controls
In the next example, called ch08_controls, we create some roles for the different
devices identified by OpenLayers 3. Firstly, we add some CSS rules for our new text-
based control:

@media only screen and (orientation: portrait) {
 […]
 .ol-geoloc {
 bottom: 0;
 right: .5em;
 white-space: pre-wrap;
 }
}

OpenLayers 3 for Mobile

[212]

@media only screen and (orientation: landscape) {
 […]
 .ol-geoloc {
 top: 0;
 right: .5em;
 }
}

As we will place our control in a pre element for correct line break detection, we
need to wrap it in portrait mode. Otherwise, the end of the lines would be off the
screen. We also change the position of this control based on the orientation of the
device. Next, we change our Geolocation object a little bit to request high accuracy
data on a regular basis:

var geoloc = new ol.Geolocation({
 projection: map.getView().getProjection(),
 tracking: true,
 trackingOptions: {
 enableHighAccuracy: true,
 maximumAge: 2000
 }
});

Now, if we can access the GPS, the data will be updated at 2-second intervals with
high accuracy.

There are three tracking options in OpenLayers 3's Geolocation object,
just like in the HTML5 Geolocation API. The enableHighAccuracy
parameter requests data from GPS results in higher-precision and
higher-power consumption. The timeout parameter defines how
old the received data can be before it is considered outdated. The
maximumAge parameter denotes how old a cached position can be
before it is considered outdated. The last two parameters are accepted in
milliseconds.

Chapter 8

[213]

Adding controls for touch devices
As a next step, we define some controls that will only be added when we open our
application from a touch device. We add a full screen control for maximum usability
and a custom control to display Geolocation-related data:

The full screen control of OpenLayers 3 uses the HTML5 full screen API.
This API can request full screen mode for an element in a web page,
displaying its content in full screen. As OpenLayers 3 requests full screen
for the map element, we must put our tool bar in it for a proper display.

if (ol.has.TOUCH) {
 document.getElementById('map').classList.add('ol-touch');
 map.addControl(new ol.control.FullScreen({
 target: 'toolbar'
 }));
 var geolocData = document.createElement('pre');
 geolocData.className = 'ol-geoloc ol-unselectabble ol-control';
 geoloc.on('change', function (evt) {
 var dataString = 'Position: ' + this.getPosition() +
'\nError: ' + this.getAccuracy() + 'm\nAltitude: ' + this.
getAltitude() + 'm\nAltitude error: ' + this.getAltitudeAccuracy() +
'm';
 geolocData.textContent = dataString.replace
(/undefined/g, 'N/A');
 });
 map.addControl(new ol.control.Control({
 element: geolocData
 }));
}

OpenLayers 3 for Mobile

[214]

As we concatenate Geolocation-related data to a single string with line breaks,
we provide them in a pre element; thus, the browsers will follow those breaks. If
we cannot access a value and the library returns undefined, we simply replace
that value to N/A with a regular expression. If you save the code in this state and
load it up from your smartphone, you will see uniform control buttons and a nice
text output in full screen. This is the way our application should be used on touch
devices:

Adding controls for desktop computers
If the library detects a regular device, it gives that a dispatcher role. A dispatcher
should be able to move points and edit the loot of the geocaches in our scenario.
Therefore, we add two such interactions to our map. We also disable Geolocation as
we do not need it from a desktop computer:

} else {
 geoloc.once('change', function (evt) {
 this.setTracking(false);
 map.addInteraction(new ol.interaction.Modify({
 features: new ol.Collection(geoCaching.getSource().
getFeatures())
 }));
 });

Chapter 8

[215]

Finally, we create our next interaction by registering a listener to the map's
click event. We query every feature under the click location, which has a loot
attribute, and create an output with its value. We wrap this output in an overlay
and display it on the map anchored on the clicked feature. We use the usual
forEachFeatureAtPixel method that accepts a layer filter function and, thus, only
queries our geocaches:

The ol.Overlay constructor has quite a lot of customizing possibilities.
Make sure that you check it out in the API documentation.

 map.on('click', function (evt) {
 map.getOverlays().clear();
 this.forEachFeatureAtPixel(evt.pixel, function (feature) {
 if (feature && feature.get('loot')) {
 var overlayElem = document.createElement('div');
 var lootElem = document.createElement('textarea');
 lootElem.textContent = feature.get('loot');
 overlayElem.appendChild(lootElem);
 overlayElem.appendChild(document.createElement('br'));
 var saveButton = document.createElement('button');
 saveButton.textContent = 'Save';
 overlayElem.appendChild(saveButton);
 var overlay = new ol.Overlay({
 position: feature.getGeometry().getCoordinates(),
 element: overlayElem
 });
 saveButton.addEventListener('click', function (evt) {
 feature.set('loot', lootElem.value);
 map.removeOverlay(overlay);
 });
 map.addOverlay(overlay);
 }
 }, this, function (layer) {
 if (layer === geoCaching) {
 return true;
 }
 return false;
 });
 });
}

OpenLayers 3 for Mobile

[216]

As we added an interaction that creates an overlay with an alternative
styling, every click returns two almost identical features. However, as
in overlay object, only the selected feature's geometry is added, we
can discard the dummy feature by querying its loot attribute.

If you save the code and load it up on your desktop computer, you can move the
geocaches and edit their loot attribute:

Note that, without a server-side component, the points won't be updated
in the mobile appliation when we update them in the desktop version.
Writing a server-side component is, however, beyond the scope of this
book.

Vectorizing the mobile version
In the next example, called ch08_styling, we improve our touch device version
with another vector layer and some styling. We display the current position of the
user and the accuracy of the position in meters, and style the geocaches based on the
height difference of our position and the caches. Firstly, we create a layer containing
our position and give it a static style:

Chapter 8

[217]

if (ol.has.TOUCH) {
 […]
 var positionLyr = new ol.layer.Vector({
 source: new ol.source.Vector(),
 style: new ol.style.Style({
 image: new ol.style.Circle({
 fill: new ol.style.Fill({
 color: [255, 255, 255, 1]
 }),
 stroke: new ol.style.Stroke({
 color: [0, 0, 0, 1],
 width: 2
 }),
 radius: 6
 }),
 stroke: new ol.style.Stroke({
 color: [255, 0, 0, 1],
 width: 2
 })
 })
 });
 map.addLayer(positionLyr);

We will have two kinds of features in this layer. If we have to deal with a point
feature, it will be our position that we style with the image property. Every other
layer, regardless of its type, will be displayed with a red line or an outline. Next, we
update our layer every time we receive a new position:

 geoloc.on('change', function (evt) {
 […]
 var positionSrc = positionLyr.getSource();
 positionSrc.clear(true);
 positionSrc.addFeatures([
 new ol.Feature({
 geometry: new ol.geom.Point(evt.target.getPosition())
 }),
 new ol.Feature({
 geometry: new ol.geom.Circle(evt.target.getPosition(),
evt.target.getAccuracy())
 })
]);
 geoCaching.setStyle(geoCaching.getStyleFunction());
 });

OpenLayers 3 for Mobile

[218]

The first part is simple: we fast-clear our new layer's source by providing a true
value to its clear method. This way, no removefeature events get dispatched,
increasing the performance of our application. After this, we add two new features,
one for our position and one to display the accuracy of it. Next, we update the style
of our geocaches, as styles returned by style functions become static after evaluation.

Try to replace the accuracy feature's geometry with the geometry
returned by the Geolocation object's getAccuracyGeometry
method and observe the difference.

Finally, we provide the style function that will be updated regularly. In this function,
we evaluate some common values based on the feature's and the position's altitude.
If a cache is almost on the same elevation as us, we symbolize it as a yellow square.
If it lies higher, it will be a red triangle pointing upwards. If it is lower than us, it's
shape will be a green triangle pointing downwards:

 geoCaching.setStyle(function (feature, res) {
 if (geoloc.getAltitude()) {
 var altitude = geoloc.getAltitude();
 var zCoord = feature.getGeometry().getCoordinates()[2];
 var shapePts, shapeColor, shapeAngle;
 if (Math.abs(altitude - zCoord) < 1) {
 shapePts = 4;
 shapeColor = [255, 255, 0, 1];
 shapeAngle = Math.PI / 4;
 } else if (zCoord < altitude) {
 shapePts = 3;
 shapeColor = [0, 255, 0, 1];
 shapeAngle = Math.PI;
 } else {
 shapePts = 3;
 shapeColor = [255, 0, 0, 1];
 shapeAngle = 0;
 }

Chapter 8

[219]

Now we can return the appropriate style object for our cache. If we can get an
altitude from our Geolocation object, we return a style evaluated previously;
otherwise, if the GPS signal is not adequate to give an altitude value, we display our
caches with red X symbols. We can create such a shape by creating a star with four
tips and a great difference between its inner and outer radii:

 return [new ol.style.Style({
 image: new ol.style.RegularShape({
 fill: new ol.style.Fill({
 color: shapeColor
 }),
 stroke: new ol.style.Stroke({
 color: [0, 0, 0, 1],
 width: 1
 }),

 points: shapePts,
 radius: 10,
 angle: shapeAngle
 })
 })];
 } else {
 return [new ol.style.Style({
 image: new ol.style.RegularShape({
 fill: new ol.style.Fill({
 color: [255, 0, 0, 1]
 }),
 stroke: new ol.style.Stroke({
 color: [0, 0, 0, 1],
 width: 1
 }),
 points: 4,
 radius1: 5,
 radius2: 10,
 angle: Math.PI / 2
 })
 })];
 }
 });
}

OpenLayers 3 for Mobile

[220]

If you save the code and look it up from your smartphone, you will see the dynamic
rendering of our position and symbols:

Making the mobile application interactive
In the final example, called ch08_interact, we extend the touch device part of our
application and make it more interactive. We want to know our heading when we
search for geocaches. Furthermore, it would be a nice feature if our application could
give some extra information about a given cache that we could select manually.

Firstly, we extend our listener on the Geolocation object's change event with some
necessary modifications. As we would like to track our position and heading, we
modify our map's view on every change:

geoloc.on('change', function (evt) {
 […]
 map.getView().setCenter(this.getPosition());
 if (this.getHeading()) {
 map.getView().setRotation(this.getHeading());
 }

Chapter 8

[221]

Just like an altitude value, heading is also a GPS-only feature. As
receiving a heading is not guaranteed, you should always put the code
responsible for rotating the map in an if clause. You can provide the
heading to the map's view directly, as it is already in radians that are
measured clockwise from north.

Next, we check whether we have a selected feature. Don't worry about the
selectInteraction object; we will add it to the map just after this part. If we have
a selected cache, we grab its coordinates. As our caches have a Z coordinate, we can
calculate an elevation delta from it and also our position's altitude data. However,
we cannot create a geometry with coordinates having different strides. To solve
this problem, we simply remove the Z coordinate from our cache's position after we
calculate the height difference:

 if (selectInteraction.getFeatures().getLength() === 1) {
 var selectedFeat =
selectInteraction.getFeatures().item(0);
 var selectedCoords =
selectedFeat.getGeometry().getCoordinates();
 var height = selectedCoords[2] - this.getAltitude();
 selectedCoords.pop();

Now, we are ready to create a new line between our position and the selected cache,
representing the as-the-crow-flies distance between the two locations. We don't have
to worry about the styling of our new feature, as we symbolize everything other than
a point with a red line:

 positionSrc.addFeature(new ol.Feature({
 geometry: new ol.geom.LineString([evt.target.
getPosition(), selectedCoords])
 }));

Next, we give some more feedback about the cache by extending our output with
some new lines. We display the distance between the two locations, the height
difference, and the possible loot of the given cache. If we can't get an altitude value,
we change the resulting NaN to N/A for added consistency:

 var extDataString = '\nDistance: ' +
positionSrc.getFeatures()[2].getGeometry().getLength() +
'm\nHeight: ' + height + 'm\nPossible loot: ' +
selectedFeat.get('loot');
 geolocData.textContent +=
extDataString.replace(/NaN/g, 'N/A');
 }
 });

OpenLayers 3 for Mobile

[222]

Finally, we add a select interaction to our map, so we can select arbitrary caches from
the cache layer:

 var selectInteraction = new ol.interaction.Select({
 layers: [geoCaching]
 });
 map.addInteraction(selectInteraction);

If you save and load up the code, you will be able to select caches and get some
information about them:

Chapter 8

[223]

Summary
In this chapter, we learned some architectural patterns to create mobile web mapping
applications with OpenLayers 3. We created a simple geocaching application that
can adapt to the type of our device. If you want to create an adaptive web mapping
application, be creative. Use these examples as a starting point and extend them with
animations and a working backend, and you have a great application on your hands.
If you think about this concept further and switch the roles of handheld and desktop
devices, you can create a field survey application. The data collected by touch
devices can be analyzed instantly from a desktop computer, if you have a working
server behind your application.

In the next chapter, we will discuss the various third-party applications and libraries
that can make your life easier. We will learn to export projects from QGIS to the
web using OpenLayers 3, and use some libraries to create richer applications with
extended capabilities.

[225]

Tools of the
Trade – Integrating

Third-Party Applications
With the knowledge that you've gained from the previous chapters, you can
create various rich, web mapping applications for multiple devices. Now that you
are aware of the most important aspects of OpenLayers 3, we will dig into some
irregular topics that are not strongly related to the library. We will take a look at how
we can implement QGIS and some third-party libraries in our workflow in order to
make our lives easier or just extend the capabilities of our application.

In this chapter, we will cover the following topics:

• Exporting layers from QGIS as a web map using OpenLayers 3
• Importing shapefile layers on the client side
• Extending topological functionality with Turf and JSTS
• Creating 3D visualizations with Cesium

Before getting started
As we are going to use QGIS in this chapter, you will need to have a working copy
installed on your computer. Installing QGIS is straightforward; therefore, we will not
discuss the process. For the best possible experience, update the software to its latest
version before proceeding further. The example was created with QGIS 2.10 Pisa.

If you are using Windows or you need the source code, you can
download both at http://qgis.org/en/site/forusers/
download.html.

http://qgis.org/en/site/forusers/download.html
http://qgis.org/en/site/forusers/download.html

Tools of the Trade – Integrating Third-Party Applications

[226]

We will also use some third-party libraries, which are provided with the examples.
You can find them in the js folder under the appropriate subdirectory. We will need
Shapefile JS, Turf, JSTS, Cesium, and OL3-Cesium. The Cesium library is handled
as part of the OL3-Cesium integration library; therefore, it is located in the latter's
folder. For this chapter, we will use ch03_layerorder for the base of our code, just
like we did in the previous one.

Exporting a QGIS project
When we create custom web maps, we cannot always rely on already developed
OWS services. Sometimes, we need to publish our own data regardless of whether
it is plotted directly from some measurements or processed from existent data. If
we have to process our data before publishing it, we usually do it in a desktop GIS
environment. However, one of these environments, called QGIS, is not only capable
of advanced geoprocessing, but with a little help, we can export our results directly
in the form of a web map using OpenLayers 3.

If you are a GIS person, you might be familiar with QGIS. If this is the case, just
install the qgis2web plugin, load the project provided with the code (ch09_qgis.
qgs), and skip to the part where we use the plugin to export the layers. If you are not
familiar with QGIS, don't worry. Keep reading, and you will be up and running in
no time.

Quantum GIS is an open source desktop GIS application. It started slowly, but
with enough time and effort from its community, it became the most competent
open source GIS application of its time. From version 2.0, it gained very powerful
geoprocessing capabilities as developers integrated some other open source
GIS applications with it. Now, it harnesses the power of the most capable open
source applications and libraries such as GDAL, GRASS, or SAGA, and offers
a user-friendly GUI and Python API for enhanced user experience. With these
considerations in mind, QGIS is now accepted as valid competition even for the best
commercial desktop GIS, ArcGIS.

QGIS's success story is a good example of the importance of integrating
other powerful applications instead of trying to reinvent the wheel.

Chapter 9

[227]

Installing the qgis2web plugin
QGIS is a modular software. It is written in C++ but also has a Python API; thus,
people can extend it and write modules in it in any of these languages. Using the
Python API, people can create dynamic modules, called plugins, which can be
used by anyone via an inner plugin management system. These specialized Python
modules, which are created by company employees and enthusiastic individuals,
make QGIS an even richer GIS environment.

First, start QGIS. You will see the layer tree on the left-hand side, the map canvas
on the right-hand side, and some control buttons at the top and far-left. There is
also a notification bar at the bottom with some extra controls. Does this resemble
something similar to what you've seen before? We designed our WebGIS application
in the last few chapters based on the layout of QGIS, which basically matches the
layout of the most popular desktop GIS applications. At the top of the window, you
can see a menu bar. From there, access the plugin manager. It's in the Plugins menu,
called Manage and Install Plugins.... After opening the manager, wait for QGIS to
fetch the available plugins from the default repository.

Next, scroll down to the plugin named qgis2web. This plugin wraps itself around
other plugins that are capable of exporting QGIS projects to web maps using
OpenLayers 3 (qgis-ol3) and Leaflet (qgis2leaf). However, the OpenLayers 3 exporter
is not available in its original form, and nevertheless, this plugin ships with a great
preview window to check the results before exporting the map. Click on Install plugin
to download it, and you will see a new button in your toolbar as a result:

Tools of the Trade – Integrating Third-Party Applications

[228]

Inspecting the project
Now that you have the plugin installed, open the QGIS project provided with the
code, called ch09_qgis.qgs, and inspect its contents. You can open a project by
clicking on the yellow folder icon in the toolbar, the Open... button in the Project
menu, or just by pressing Ctrl + O. You can also drag and drop the project file into
the application window. As you can see, there are two vector layers and one raster
layer included in various projections. With an elevation map, a choropleth country
map, graduated capitals map, and some labels from the countries map, we can test
the plugin against the most basic display types.

Cannot see the elevation map? Right-click on it in the layer tree and
select the Zoom to Layer option.

With the toolbar on the left-hand side of the window, you can add additional layers,
while in the layers' Properties window, you can adjust the styling. You can access
this window by right-clicking on a layer element in the layer tree and selecting the
corresponding menu entry:

QGIS projects store the reference of the resources with relative paths. As
long as you do not modify the structure of the directory, you don't have
to worry about inaccessible resources in other systems.

Chapter 9

[229]

Exporting a map
Next, we open the qgis2web plugin to customize our map before exporting it.
You can access the plugin from the toolbar or the Web menu's qgis2web entry. In
the plugin's main window, you will see our layers nicely aligned in the preview
window. However, there is something weird about them. The plugin can export
maps in Web Mercator or the project's projection. When it exports the project, it
transforms and warps every layer to the chosen projection before showing them.

Did you notice that Antarctica in the countries' layer only extends to
85 degrees south instead of 90 degrees? Web Mercator's validity extent
only extends to 85.06 degrees north and south. Beyond these limits,
transformations produce great errors, ending in 90 degrees, which is
equal to infinity in Web Mercator. This phenomenon also has an effect on
the plugin. If we provide a layer with an extent outside Web Mercator's
validity extent, we won't see anything in the preview window.

Let's make a thorough test and check checkboxes everything aside from the Show
popups on hover and Match project CRS options. This way, we have to click on
the map to identify its features. However, to have popups, we need some attributes
to expose. In the top window, we add some attributes to the popups (Info popup
content). Finally, we define a base layer in the bottom window, and then we export
the composition:

Tools of the Trade – Integrating Third-Party Applications

[230]

In the latest version of qgis2web (0.39.0), the plugin lacks the capability
of exporting or displaying raster layers in the preview window. If you see
an error message in the preview window, simply disable the raster layer
in the top window, and click on Update preview. Naturally, by doing
this, the raster layer won't be exported.

Salvaging the results
Once you click on Export, the plugin will open the exported map in your default
browser. The first thing we can see in the preview already is that this composition
is ugly and cannot be used as a map. Nevertheless, the plugin works great and can
render every display type we provided in our project. The result is good as a quick
preview but nothing more. However, there is valuable information coded in the
created files. Let's navigate to the export folder and examine those files.

First, there is the index.html file, which contains two libraries, some styling, and
the JavaScript part of the aggregated map. One of the libraries is OpenLayers 3. As
we requested a layer switcher in the plugin, it also linked an extension to the library
called OpenLayers 3 LayerSwitcher. This is a lightweight layer switcher, capable of
handling base layers and overlays. It allows us to select from multiple base layers
and toggle the visibility of overlays.

You can download OpenLayers 3 LayerSwitcher from the GitHub
repository at https://github.com/walkermatt/ol3-
layerswitcher/releases.

If we further examine the index file, we can see that there are other local JavaScript
files included from the layers and styles folder. Let's check these scripts for
additional valuable information. In the layers folder, we can see that our elevation
map is in a JPEG format, our vector layers in GeoJSON (saved to variables), and
there is a layers.js file. Let's open the third file in a text editor:

If you do not see the raster layer, ensure that you have zoomed to
the full extent in QGIS.

https://github.com/walkermatt/ol3-layerswitcher/releases
https://github.com/walkermatt/ol3-layerswitcher/releases

Chapter 9

[231]

As we can see, the layer objects are created in this script. The most valuable
information, which can be salvaged from this script, is our exported elevation layer's
extent. It is in Web Mercator; however, we can transform it to any projection with
OpenLayers 3:

var lyr_spearfish6dem = new ol.layer.Image({
 opacity: 1,
 title: "spearfish60_dem",
 source: new ol.source.ImageStatic({
 url: "./layers/spearfish6dem.jpg",
 projection: 'EPSG:3857',
 alwaysInRange: true,
 imageSize: [634, 477],
 imageExtent: [-11562879.041972,
5523336.351119, -11535975.014406, 5543008.947284]
 })
 });

As we now have the extent of the layer, we can export it in any browser-capable
format from QGIS and have a better, but already georeferenced, image. For example,
we could export it in PNG for a lossless result.

If you are familiar with our elevation map from the Spearfish60
example of GRASS, you must be wondering why it has floating point
values and why those values range from 13.77 to 215.475. Well, QGIS,
and, therefore, qgis2web, use GDAL to export images. The GDAL JPEG
exporter only accepts rasters with values between 0 and 255. If you try to
export an image with a wider value range, lower and higher values are
set to 0 and 255, respectively.

Tools of the Trade – Integrating Third-Party Applications

[232]

Finally, let's navigate to the styles folder. In this folder, we can see a separate
script for every vector layer that we have. If we open one of the scripts, we can also
see the symbology for the graduated layers that are stored in these files. They are
quite verbose and complicated; however, everything is in one place. We can get the
intervals but also the associated colors or circle radii:

var ranges_worldcountries = [[-99.000000, 2150955.800000, [new
ol.style.Style({
 stroke: new ol.style.Stroke({color:
"rgba(0,0,0,1.0)", lineDash: null, width: 0}),
 fill: new ol.style.Fill({color:
"rgba(5,113,176,1.0)"})
 })
]],
[…]

Importing shapefiles
In the next example, called ch09_shp, we implement a method to import binary
layers to our maps. Shapefile is an old specification to store vector data; however,
it is still a very common and popular exchange format. It stores the geometry in a
binary file, which has an shp MIME type. There are usually at least three more files
along with the geometry. The shx file stores the shape indexes of the geometries in
a binary format, providing an internal spatial indexing for faster lookups. The prj
file is an ASCII file containing the projection string of the layer, while the dbf file is
a dBASE database file containing attribute data. For this example to work, we will
need at least the shp and dbf files of a shapefile.

Editing the HTML file
First, let's edit the HTML file of the example. In this example, we will implement an
easy way and replace the function associated with the Add Vector Layer button in
our layer tree. This way, we don't have to touch the GUI elements, just modify the
form and the function. As we will use the Shapefile JS library to load our shapefiles,
we have to link it in our HTML file's head section:

<head>
 […]
 <script type="text/javascript" src="../../js/shp-3.3.1/shp.min.
js"></script>
</head>

Chapter 9

[233]

You can grab the latest version of the Shapefile JS from the GitHub
repository at https://github.com/calvinmetcalf/shapefile-
js/releases.

The next consideration we have to make before we continue with reshaping the
form is how we would like to handle the user-provided files. Shapefile JS offers
three mechanisms for inputs. It can handle a path with the name of the shapefile,
individual shp, dbf, and optional prj files, or a zip file, which contains one or more
shapefiles. Providing a path is the most convenient; however, it is only possible if
the shapefile is located in our server. As requiring the three files individually is quite
annoying, we will require a simple zip file from our users:

<div id="addvector" class="toggleable" style="display: none;">
 <form id="addvector_form" class="addlayer">
 <p>Add Shapefile</p>
 <table>
 <tr>
 <td>Vector file:</td>
 <td><input name="file" type="file"
required="required" accept=".zip"></td>
 </tr>
 <tr>
 <td>Display name:</td>
 <td><input name="displayname" type="text"></td>
 </tr>
 <tr>
 <td>Projection:</td>
 <td><input name="projection" type="text"></td>
 </tr>
 <tr>
 <td><input type="submit" value="Add layer"></td>
 <td><input type="button" value="Cancel" onclick="this.
form.parentNode.style.display = 'none'"></td>
 </tr>
 </table>
 </form>
</div>

With the accept parameter of the file input element, you can restrict
the accepted file types in various ways. Note that users can easily
override this filter, thus using it for extra convenience and not replacing
further checks.

https://github.com/calvinmetcalf/shapefile-js/releases
https://github.com/calvinmetcalf/shapefile-js/releases

Tools of the Trade – Integrating Third-Party Applications

[234]

Replacing a function
Now that our form is in its place, the only thing left to do is replace the old
addVectorLayer method with a new one. Let's open the JavaScript file of the example
and navigate to line 305. The structure of the function remains the same. We read the
form, create a file reader and, once it has finished reading the file, we parse its content
and display it as a layer in our map. However, in this case, we only read shapefiles;
therefore, we do not need to switch between multiple formats. As Shapefile JS returns
the parsed binary data in GeoJSON, we only need this particular format:

layerTree.prototype.addVectorLayer = function (form) {
 var file = form.file.files[0];
 var currentProj = this.map.getView().getProjection();
 var fr = new FileReader();
 var sourceFormat = new ol.format.GeoJSON();
 var source = new ol.source.Vector();

Once we have the right variables and constructors, we can create the file reader's
onload listener and read the file right away:

 fr.onload = function (evt) {
 var vectorData = evt.target.result;
 var dataProjection = form.projection.value ||
sourceFormat.readProjection(vectorData) || currentProj;
 shp(vectorData).then(function (geojson) {
 source.addFeatures(sourceFormat.readFeatures(geojson,
{
 dataProjection: dataProjection,
 featureProjection: currentProj
 }));
 });
 };
 fr.readAsArrayBuffer(file);
 […]
};

Now, there are two things we should discuss from the listener in more detail. First,
we've called the Shapefile JS's shp method with the input file and placed the loading
mechanism inside its then method. If you know some of the perks and new features
of ES6 (EcmaScript, which is the official name of JavaScript), you may have identified
the returned object of the shp method as a promise. Promises, in a nutshell, are the
new way to handle asynchronous functions. They offer a simple and clean interface
to make nestable asynchronous calls and handle occasional errors. To learn more
about promises, you can consult the MDN page at http://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise.

http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Chapter 9

[235]

Don't worry about using Shapefile JS in browsers that do not have the ES6
features implemented yet. The library uses another library, called lie, to
create and handle promises. However, it does not use the polyfill version
of lie; therefore, Shapefile JS cannot use the ES6 Promise constructor
even if a browser has one.

The second thing is that we read our data using the file reader's readAsArrayBuffer
method. As we have to deal with a set of binary files packed into a single binary file,
we need a binary representation of our content. This way, the library can read our
shapefiles correctly. Shapefile JS uses another third-party JavaScript library, JSZip,
to read zip files from the client side. With the file reader's readAsArrayBuffer
method, we simply request a read-only buffer object with the binary content of the
opened zip file.

Now that we have our replaced method in place, we can test our new capability.
Open up the result in a browser, and try to load a zipped shapefile in our
application. You can find one in the res folder, called glaciated.zip.

Don't worry about the layer's projection if your shapefile has a prj file
included. Shapefile JS is capable of automatic coordinate transformations
with PROJ4JS, and if it can recognize the layer's projection, it will always
return the GeoJSON object in EPSG:4326 (WGS84).

Tools of the Trade – Integrating Third-Party Applications

[236]

Spatial analysis with Turf
In the next example, called ch09_turf, we will extend our application's topological
capabilities with Turf. Turf is a well-documented, simple, but capable, library for
geospatial analysis. All the basic topological functions are in the library along with
some more advanced and scarce functions. Turf uses GeoJSON not only as its
exchange format but also as its internal format. This enables it to skip the overhead
caused by data conversion.

You can grab the most recent version of Turf from the GitHub repository
at https://github.com/Turfjs/turf/releases.

First, we open the HTML file and resolve the dependencies. We have an easy job
with Turf as we only have to provide one extra JavaScript file:

<head>
 […]
 <script type="text/javascript" src="../../js/turf-
2.0.0/turf.min.js"></script>
</head>

Preparing an example
Before jumping into the implementation of different spatial operations, we need to
tweak our example a little bit. First, as we wouldn't want to involve our layer tree,
we simply hack it in order to save the selected layer in the map object:

layerTree.prototype.addSelectEvent = function (node, isChild) {
 […]
 _this.map.set('selectedLayer',
_this.getLayerById(targetNode.id));
 […]
};

Next, we rewrite our map constructor a little bit so that we can add one additional
vector layer. As we will implement different kinds of spatial operations, we will need
different types of layers to test them on. Additionally, you can add a further line
layer, too:

var map = new ol.Map({
 […]

https://github.com/Turfjs/turf/releases

Chapter 9

[237]

 new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_capitals.geojson'
 }),
 name: 'World Capitals'
 }),
 new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_countries.geojson'
 }),
 name: 'World Countries'
 })
],
 […]
});

We also add every layer created in this way to the layer tree manually, and then
register an interaction with the countries' layer as we would like to be able to
modify it:

var tree = new layerTree({map: map, target: 'layertree', messages:
'messageBar'})
 .createRegistry(map.getLayers().item(0))
 .createRegistry(map.getLayers().item(1))
 .createRegistry(map.getLayers().item(2));

map.getLayers().item(2).getSource().once('change', function (evt)
{
 if (this.getState() === 'ready') {
 map.addInteraction(new ol.interaction.Modify({
 features: new ol.Collection(evt.target.getFeatures())
 }));
 }
});

Tools of the Trade – Integrating Third-Party Applications

[238]

Implementing a buffer operation
In this example, we will create a single control for three spatial operations. The first
one creates a buffer around the input elements, the second one merges an entire
layer, while the third one checks for self-intersections in the input polygons.

The operations presented in this example are just a little subset of the
true capabilities of Turf. If you want to get introduced to the library,
you can browse its API page at http://turfjs.org/static/docs/.

First, we only create a control for buffering, then we proceed and extend this control.
This way, you can check every functionality before we go on to the next. First, we
create the required DOM elements for our control:

ol.control.Turf = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = options.class || 'ol-turf ol-
unselectable ol-control';
 var bufferButton = document.createElement('button');
 bufferButton.textContent = 'B';
 bufferButton.title = 'Buffer selected layer';

Next, we define what will happen if we click on the buffer button. As we can access
the selected layer without getting the layer tree object, this makes our job easier. The
Turf API documentation says that we can provide a feature or feature collection to the
buffer method; thus, we won't make any checks, just pass the content of an entire
layer to the method in GeoJSON. As we need a GeoJSON object, rather than the string
representation of the GeoJSON, we can use the format object's writeFeaturesObject
method instead of the more commonly used writeFeatures method:

 bufferButton.addEventListener('click', function (evt) {
 var layer = _this.getMap().get('selectedLayer');
 var units =
_this.getMap().getView().getProjection().getUnits();
 if (layer instanceof ol.layer.Vector) {
 var parser = new ol.format.GeoJSON();
 var geojson =
parser.writeFeaturesObject(layer.getSource().getFeatures());

http://turfjs.org/static/docs/

Chapter 9

[239]

 var buffered = turf.buffer(geojson, 10000, units);
 var bufferedLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 features: parser.readFeatures(buffered)
 }),
 name: 'Buffer result'
 });
 _this.getMap().addLayer(bufferedLayer);
 }
 });
 controlDiv.appendChild(bufferButton);

After the buffering is done, we load the result in a new layer. In this example, we will
work with a fixed radius of 10,000 meters.

The buffer method requires three parameters: the feature(s) in
GeoJSON, a buffer radius, and the units that the radius is in. We can
easily get the current map units from the map's projection object.

Finally, we close our control with the ordinary method, and add it to our map:

 controlDiv.appendChild(selfIntersectButton);
 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
};
ol.inherits(ol.control.Turf, ol.control.Control);
[…]
 var map = new ol.Map({
 […]
 controls: [
 […]
 new ol.control.Turf({
 target: 'toolbar'
 })
],
 […]

Tools of the Trade – Integrating Third-Party Applications

[240]

If you test our example in this state (in the World Capitals layer first), you can try
out our new buffering capability. Note that this is an expensive operation; therefore,
if you provide a big dataset as input, you have to wait for it to finish for quite a bit
of time:

As you can see, there are some points that were not processed by the
algorithm. To test it further, use the world countries' layer as an input.
What do you observe? Turf returned an error and did not create the
buffers. The algorithm cannot process multipart geometries correctly. Fear
not! We will learn how to split up these geometries in the third operation.

Implementing a merge operation
Next, we implement an additional operation to merge entire polygon layers. Let's
take a look at the Turf API documentation's merge operation. It requires a set of
polygons in a geometry collection and returns a simple polygon or a multipart
polygon. First, we create the DOM elements of the new control button:

ol.control.Turf = function (opt_options) {
 […]
 var mergeButton = document.createElement('button');
 mergeButton.textContent = 'M';
 mergeButton.title = 'Merge selected layer';

Chapter 9

[241]

Next, we register a listener on the button's click event as usual. As we can pass a
geometry collection to this method and the OpenLayers 3 GeoJSON's format returns
a geometry collection when its writeFeaturesObject method is called, we don't
check anything; we just pass the GeoJSON object to Turf:

 mergeButton.addEventListener('click', function (evt) {
 var layer = _this.getMap().get('selectedLayer');
 if (layer instanceof ol.layer.Vector) {
 var parser = new ol.format.GeoJSON();
 var geojson = parser.writeFeaturesObject(layer.
getSource().getFeatures());
 var merged = turf.merge(geojson);
 var mergedLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 features: parser.readFeatures(merged)
 }),
 name: 'Merge result'
 });
 _this.getMap().addLayer(mergedLayer);
 }
 });
 controlDiv.appendChild(mergeButton);

If you save the example and try out our new functionality, you will see that we
can execute the merge operation on both of the vector layers. You can also observe
that we do not get a simple continuous polygon for every continent but multipart
polygons with some inner borders, instead. This can easily mean that we have some
topology errors inside our dataset:

Tools of the Trade – Integrating Third-Party Applications

[242]

Once the API documentation is stated, the merge method expects a set
of simple polygons as input. However, we could manage to use it in
point features and multipart polygons, too. As the API documentation
does not cover every use case correctly, you should always experiment
with it before deploying an application.

Implementing the self-intersect operation
Now that we've discovered an algorithm to detect topological integrity in Turf, we
will further implement an operation that's dedicated to such a purpose. The kinks
method checks one simple polygon at a time, according to the API documentation,
and returns a collection of points at self-intersections. First, let's create the DOM
elements for the last control button:

 var selfIntersectButton = document.createElement('button');
 selfIntersectButton.textContent = 'S';
 selfIntersectButton.title = 'Check self intersections';

Next, as we would like this method to work correctly, we limit the operation to
two types of features: simple polygons and multipart polygons. We get the selected
layer's features if it is a vector:

 selfIntersectButton.addEventListener('click', function (evt) {
 var layer = _this.getMap().get('selectedLayer');
 if (layer instanceof ol.layer.Vector) {
 var parser = new ol.format.GeoJSON();
 var selfIntersectLayer = new ol.layer.Vector({
 source: new ol.source.Vector(),
 name: 'Self intersects'
 });
 _this.getMap().addLayer(selfIntersectLayer);
 var features = layer.getSource().getFeatures();

Next, we iterate through the features, convert them to GeoJSON one by one, and
perform additional checks on them. If we meet a simple polygon, we just call the
kinks method on it, and add occasional results to a new layer. If we have to deal
with a multipart polygon, we make a second loop and get the coordinates of every
part. From the coordinates, we create a simple GeoJSON polygon with Turf's
polygon method and call kinks on it:

Chapter 9

[243]

 for (var i = 0; i < features.length; i += 1) {
 var geojson =
parser.writeFeatureObject(features[i]);
 if (geojson.geometry.type === 'MultiPolygon') {
 for (var j = 0; j <
geojson.geometry.coordinates.length; j += 1) {
 var selfIntersect =
turf.kinks(turf.polygon(geojson.geometry.coordinates[j]));
 if
(selfIntersect.intersections.features.length > 0) {
 selfIntersectLayer.getSource().
addFeatures(parser.readFeatures(selfIntersect.intersections));
 }
 }
 } else if (geojson.geometry.type === 'Polygon') {
 var selfIntersect = turf.kinks(geojson);
 if (selfIntersect.intersections.features.length >
0) {
 selfIntersectLayer.getSource().
addFeatures(parser.readFeatures(selfIntersect.intersections));
 }
 }
 }
 }
 });
 controlDiv.appendChild(selfIntersectButton);

According to the API documentation, kinks returns a collection of
GeoJSON points. However, it returns an object that occasionally has
a set of GeoJSON points in its intersections attribute. Always use
the API documentation and the rich examples hand in hand for quick
and satisfying results.

Tools of the Trade – Integrating Third-Party Applications

[244]

If you load the final code in your browser, you can test all of our geospatial
operations implemented with Turf. For the last operation, use the modify interaction,
which we added to our map at the beginning of the example, and mess up one or
more polygons horribly (create a lot of self-intersections):

You will notice that the asterisk remains next to the new layer. This
does not mean that it is still processing; we just did not bother to create
a hack that removes it. If you can see the points on the places of self-
intersections, the analysis has succeeded.

Spatial analysis with JSTS
Now that we are kind of familiar with Turf, let's take a look at another topological
library: JSTS. In this example, called ch09_jsts, we will reproduce the first two
spatial operations from the previous example with JSTS. As we would like to make
the least replicated code, we will use ch09_turf as the basis for this example.

Chapter 9

[245]

JSTS Topology Suite (JSTS) is another reasonably mature topology library out there. It
is the JavaScript port of the famous desktop topology application, Java Topology Suite
(JTS). The most important difference between Turf and JSTS is that JSTS is more robust
but less capable of implementation. It uses an internal format to handle geometries
and offers some I/O capabilities. It can traditionally read from Well-Known Text
(WKT), but now it can also read from GeoJSON, OpenLayers 2, and OpenLayers 3's
internal geometry formats. It can also write to these formats. As JSTS can directly
read and write OpenLayers 3's geometries, the overhead of converting geometries
to an exchange format is minimal. The biggest downside of JSTS is its terribly poor
documentation. It is old and highly outdated; therefore, the newest features can only
be explored by reading the source code or experimenting from the console.

You can download the latest release of JSTS from the GitHub repository
at https://github.com/bjornharrtell/jsts/releases.

First, like in the previous examples, we will resolve the dependencies of JSTS in the
HTML file. For JSTS, we have to include two JavaScript files, and as JSTS initializes
itself with the other utility library, the order really matters:

<head>
 […]
 <script type="text/javascript" src="../../js/jsts-0.17.0/
javascript.util.min.js"></script>
 <script type="text/javascript" src="../../js/jsts-0.17.0/jsts.min.
js"></script>
</head>

Implementing operations
As we have gone through the implementing process already, we will now only
discuss the changes between the previous implementation and this one. First, we
initialize our control and define some variables for the buffer operation:

ol.control.JSTS = function (opt_options) {
 […]
 controlDiv.className = options.class || 'ol-jsts ol-unselectable
ol-control';
 […]
 bufferButton.addEventListener('click', function (evt) {
 var layer = _this.getMap().get('selectedLayer');
 if (layer instanceof ol.layer.Vector) {
 var parser = new jsts.io.olParser();
 var features = layer.getSource().getFeatures();
 var buffered = [];

https://github.com/bjornharrtell/jsts/releases

Tools of the Trade – Integrating Third-Party Applications

[246]

JSTS can read and write OpenLayers 3's geometries but not its features. This way, if
we would like to keep the attributes of the original features, we need to clone them
first and set their geometries for the result of the operation. To store these features,
we initialize an empty array. Next, we iterate through the features and buffer them
one by one:

 for (var i = 0; i < features.length; i += 1) {
 buffered.push(features[i].clone());
 var geom = parser.read(features[i].getGeometry());
 buffered[i].setGeometry(parser.write(geom.
buffer(10000)));
 }

We create a clone of every feature, add it to our array, and override its geometries
dynamically. In JSTS, we can call topological methods from the converted geometry
objects. The buffer method of JSTS needs only one parameter: the radius in
map units. It has two optional parameters: the number of segments that the
approximation of a circular line end should be made up of and the line end (cap)
style. Finally, we finish our control by creating a new layer, adding the content of our
array to it, and adding it to the map:

 var bufferedLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 features: buffered
 }),
 name: 'Buffer result'
 });
 _this.getMap().addLayer(bufferedLayer);
 }
 });

Next, we implement the merge operation. It is available in JSTS under the union
method and accepts one argument: another JSTS geometry. Theoretically, it
can calculate a union of a geometry collection if it is called on one without any
arguments; however, in practice, it throws an error. This way, we can merge our
layer by calling the union method with every feature. First, we will set up the
required variables:

 […]
 mergeButton.addEventListener('click', function (evt) {
 var layer = _this.getMap().get('selectedLayer');
 if (layer instanceof ol.layer.Vector) {
 var parser = new jsts.io.olParser();
 var features = layer.getSource().getFeatures();
 var unionGeom = parser.read(features[0].getGeometry());

Chapter 9

[247]

We initialize our operation with the first feature of the layer that's converted to a
JSTS geometry. This variable will store the union of the processed features and will
be extended for every iteration. Next, we create the iteration, and add a new, merged
layer to the map. Note that we will only have one geometry in the end; therefore, we
will lose every attribute that's associated with the original dataset:

 for (var i = 1; i < features.length; i += 1) {
 unionGeom = unionGeom.union(parser.read(features[i].
getGeometry()));
 }
 var mergedLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 features: [
 new ol.Feature({
 geometry: parser.write(unionGeom)
 })
]
 }),
 name: 'Merge result'
 });
 _this.getMap().addLayer(mergedLayer);
 }
 });
 […]
};
ol.inherits(ol.control.JSTS, ol.control.Control);

If you save the code and load it in your browser, you can try out the topological
functions that we implemented with JSTS. Don't forget to try out buffering with the
help of the polygon layer:

Tools of the Trade – Integrating Third-Party Applications

[248]

3D rendering with Cesium
In our final example, called ch09_cesium, we will integrate Cesium into our
application. Cesium is a 3D web mapping application, capable of rendering ordinary
OWS layers and features on a globe and creating DEM visualizations with elevation
tiles. It can display various spatial data in 2D and 3D, knows some projections, and
on top of visualizing elevation data, it can also render 3D objects using various
3D-capable formats.

The only problem with Cesium is that it would be very hard to synchronize with
OpenLayers 3. Luckily, the OpenLayers 3 developer team created an integration
library, which can utilize the 3D capabilities of Cesium. The downside of this
approach is the limitation of the capabilities of Cesium. We can use the 3D renderer,
Web Mercator, and the WGS84 projections (EPSG:3857 and EPSG:4326), and we can
access the currently used Cesium scene. The library automatically synchronizes the
scene with our OpenLayers 3 map, and if we know how to use Cesium, we can also
use some Cesium-only features with the object of the exposed scene.

Preparing a map
First, we include the Cesium and OL3-Cesium libraries in our HTML file. We must
include both of the libraries, but in this case, theoretically, the order does not matter.
However, loading Cesium before OL3-Cesium is the least error-prone; therefore, we
will do this.

OL3-Cesium ships with the exact versions of OpenLayers 3 and Cesium
that it was compiled against. On the top of this, from OL3-Cesium
1.10.0, OpenLayers 3 is bundled in ol3cesium.js. This way, we do
not have to include ol.js in a script tag. The integration library
will be error-free when we use it with the proper OpenLayers 3 and
Cesium versions. However, if we want to use a custom version that
is compatible with the given OL3-Cesium version, we can do this by
including our custom library after OL3-Cesium.

<head>
 […]
 <script type="text/javascript" src="../../js/ol3-cesium-
1.10.0/Cesium/Cesium.js"></script>
 <script type="text/javascript" src="../../js/ol3-cesium-
1.10.0/ol3cesium.js"></script>
 <script type="text/javascript" src="ch09_cesium.js"></script>
</head>

Chapter 9

[249]

Next, we load some additional layers in our JavaScript file to test the rendering
capabilities of the library. We will use MapQuest's OpenStreetMap layer because it
has some nice hillshade effects. As an overlay, we will use a GeoJSON point layer
containing capitals. We will use a marker to represent these capitals instead of the
default blue circles:

var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.MapQuest({
 layer: 'osm'
 }),
 name: 'MapQuest'
 }),
 new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.GeoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/world_capitals.geojson'
 }),
 name: 'World Capitals',
 style: new ol.style.Style({
 image: new ol.style.Icon({
 anchor: [0.5, 46],
 anchorXUnits: 'fraction',
 anchorYUnits: 'pixels',
 src: '../../res/marker.png'
 })
 })
 })
],
 […]
});
var tree = new layerTree({map: map, target: 'layertree', messages:
'messageBar'})
 .createRegistry(map.getLayers().item(0))
 .createRegistry(map.getLayers().item(1));

Tools of the Trade – Integrating Third-Party Applications

[250]

For the images representing the capital cities, we used some extra parameters for
styling. The anchor property represents the offset of the image. As OpenLayers 3
snaps the upper-left corner of the image to the feature, we define an offset, and thus
the cusp of the marker is snapped to the capital it represents. We can use different
units for different dimensions, therefore we also define them as extra parameters.
The preceding style definition indicates that the library should offset the image by
50% (0.5 fraction) to the left and 46 pixels upward (the height of the image is 48
pixels).

In OpenLayers 3, we can use cross-origin images, but Cesium will
throw an error when it tries to access them. This way, the marker
is provided as part of the example and is downloaded from the
OpenLayers 3 official page.

Creating a control
Next, we continue creating the control. First, as usual, we create the element of the
control and parameterize it correctly:

ol.control.Cesium = function (opt_options) {
 var options = opt_options || {};
 var _this = this;
 var controlDiv = document.createElement('div');
 controlDiv.className = options.class || 'ol-cesium ol-
unselectable ol-control';

The next step is to initialize the 3D visualization of our map. The only problem with
this is that the OL3-Cesium library requires the map object to read out the layers and
view properties. However, if we provide the control in the map's constructor, we will
not have the map object yet when this code block is run. To avoid such errors, we
call this part of the code asynchronously; thus, we put the construction of the Cesium
scene after the construction of the map object.

Alternatively, you can use a promise to achieve the same result but
with nicer code.

Chapter 9

[251]

The initialization of the Cesium scene via OL3-Cesium is quite automatic. We only
have to define one thing: the source of the elevation tiles. By default, Cesium can
use two kinds of elevation formats: quantized mesh and height map. Both of these
formats are supported by the CesiumTerranProvider constructor:

 setTimeout(function () {
 var ol3d = new olcs.OLCesium({map: _this.getMap()});
 var scene = ol3d.getCesiumScene();
 scene.terrainProvider = new Cesium.CesiumTerrainProvider({
 url: 'http://assets.agi.com/stk-terrain/world'
 });
 _this.set('cesium', ol3d);
 }, 0);

Next, we create the control button and define its click event. We can easily read
the status of the visualization; therefore, we can enable or disable it according to
its status. The only extra command we include is the setBlockCesiumRendering
method. When we disable the visualization, we also block the dynamic rendering
of the current viewport in Cesium. This consideration improves the performance
of the 2D application but makes the rendering longer when we activate the 3D
visualization:

 var controlButton = document.createElement('button');
 controlButton.textContent = '3D';
 controlButton.title = 'Toggle 3D rendering';
 controlButton.addEventListener('click', function (evt) {
 var cesium = _this.get('cesium');
 if (cesium.getEnabled()) {
 cesium.setBlockCesiumRendering(true);
 cesium.setEnabled(false);
 } else {
 cesium.setBlockCesiumRendering(false);
 cesium.setEnabled(true);
 }
 });

Finally, we close our control in the usual way and add it to the map:

 controlDiv.appendChild(controlButton);
 ol.control.Control.call(this, {
 element: controlDiv,
 target: options.target
 });
};

Tools of the Trade – Integrating Third-Party Applications

[252]

ol.inherits(ol.control.Cesium, ol.control.Control);
[…]
 var map = new ol.Map({
 […]
 controls: [
 […]
 new ol.control.Cesium({
 target: 'toolbar'
 })
],
 […]
 });

If you load the example and enable 3D rendering, you can browse the capitals on
the globe and have a nice visualization of the terrain due to the elevation tiles and
shaded base layer. You can also check how the atmosphere is rendered in Cesium:

Chapter 9

[253]

Observing a terrain
Now that we have taken a look at the 3D visualization of our map on a global scale,
let's also examine the minor details of it. There is another example, called ch09_
cesium_terrain, in which we will load some more layers. First, we extend our map
with two more layers. The first one is the topological map of the Grand Canyon,
while the second is a vector layer in TopoJSON, representing the major rivers on the
Earth:

var map = new ol.Map({
 target: 'map',
 layers: [
 […]
 new ol.layer.Tile({
 source: new ol.source.XYZ({
 url: 'http://tileserver.maptiler.com/grandcanyon/{z}/
{x}/{y}.png'
 }),
 name: 'Grand Canyon'
 }),
 new ol.layer.Vector({
 source: new ol.source.Vector({
 format: new ol.format.TopoJSON({
 defaultDataProjection: 'EPSG:4326'
 }),
 url: '../../res/rivers.topojson'
 }),
 name: 'Rivers',
 altitudeMode: 'clampToGround'
 }),
 […]

Next, as we do not expect anyone to know the coordinates of the Grand Canyon, we
center our view in this way:

 […]
 view: new ol.View({
 center: [-12488000, 4308000],
 zoom: 12
 })
});

Tools of the Trade – Integrating Third-Party Applications

[254]

We also add our new layers to the layer tree for a nice visual feedback:

var tree = new layerTree({map: map, target: 'layertree', messages:
'messageBar'})
 .createRegistry(map.getLayers().item(0))
 .createRegistry(map.getLayers().item(1))
 .createRegistry(map.getLayers().item(2))
 .createRegistry(map.getLayers().item(3));

Now, if you load the extended example and enable 3D rendering, you will see the
Grand Canyon's terrain with the topological map and shaded MapQuest layer
draped around it:

As you can see, there is one odd thing in the composition. The Colorado
River is not masked by the terrain. There is an option in Cesium to
create geometries, which are draped around the terrain, and a depth test
is executed against them. You can invoke this option even from OL3-
Cesium by adding a property to a vector layer, named altitudeMode,
and setting its value to clampToGround. However, Cesium does not
support draping line geometries yet, just polygons. Alternatively, you
can set the globe.depthTestAgainstTerrain property of the
Cesium scene to true, but you will need a vector layer with altitude data
for this to work correctly.

Chapter 9

[255]

Extending the Cesium scene
In the final task, let's look into what we can do easily with the Cesium scene. In this
example, which has a dedicated JavaScript file like the previous one, we will focus on
Cesium and create some stars, a Sun, Moon, some water effects, and lighting effects.
This example is called ch09_cesium_extend.

First, let's extend our control and modify the exposed Cesium scene. We will request
some additional data from the terrain provider:

ol.control.Cesium = function (opt_options) {
 […]
 scene.terrainProvider = new Cesium.CesiumTerrainProvider({
 url: 'http://assets.agi.com/stk-terrain/world',
 requestWaterMask: true,
 requestVertexNormals: true
 });

The water mask is quite an expressive name; we use it to request the shorelines of the
terrain. With this option set to true, Cesium will render a more water-like texture to
water bodies and even animate waves on higher zoom levels. Vertex Normal is a bit
of a different term. With this option, we can request information in order to shade
the terrain. Next, we will create the sky along with the stars:

 scene.skyBox = new Cesium.SkyBox({
 sources: {
 positiveX:
Cesium.buildModuleUrl('Assets/Textures/SkyBox/tycho2t3_80_px.jpg'),
 negativeX:
Cesium.buildModuleUrl('Assets/Textures/SkyBox/tycho2t3_80_mx.jpg'),
 positiveY:
Cesium.buildModuleUrl('Assets/Textures/SkyBox/tycho2t3_80_py.jpg'),
 negativeY:
Cesium.buildModuleUrl('Assets/Textures/SkyBox/tycho2t3_80_my.jpg'),
 positiveZ:
Cesium.buildModuleUrl('Assets/Textures/SkyBox/tycho2t3_80_pz.jpg'),
 negativeZ:
Cesium.buildModuleUrl('Assets/Textures/SkyBox/tycho2t3_80_mz.jpg')
 }
 });

Tools of the Trade – Integrating Third-Party Applications

[256]

Cesium ships with some default textures, such as one for water bodies, another for
the Moon, and multiple JPEG images for a darkly colored sky. We have to supply
these images manually since there are no default values for the SkyBox sources.
There is a convenient method, however, that lets us use the path from the Cesium
directory, called buildModuleUrl. Finally, we add the Moon and Sun as well as
enable lighting effects on the Earth. To achieve this, we have to use the scene's globe
property, which represents the Earth. For the Moon, we disable the lighting effect;
otherwise, we would only see a black disk in its place:

 scene.moon = new Cesium.Moon({
 onlySunLighting: false
 });
 scene.sun = new Cesium.Sun();
 scene.globe.enableLighting = true;
 […]

If you load this example, you can admire the multiple textures and effects provided
by Cesium directly in your browser:

Chapter 9

[257]

Summary
Congratulations! You are almost there! In this chapter, you learned a bit about
extendibility and modularity. You learned about the perks of modular applications
and how to bring third-party libraries into your workflow. You also learned a few
things about QGIS, including not only creating a quick preview of your project but
also salvaging valuable information from it. You explored the usage of some of
the most useful third-party libraries for a WebGIS application built in OpenLayers
3. To top this, we managed to create beautiful 3D visualizations with Cesium and
OpenLayers 3, which was the most exciting part of this chapter.

In the final chapter, you will learn how to use the Closure Compiler and create
custom builds of OpenLayers 3. This is useful to create lightweight versions when
we do not need the full capability of this robust library. Additionally, you will learn
how to extend the source code or expose originally hidden functions, which we
would like to access for our project. Finally, you will also learn how to automatically
create rich documentation for our project based on OpenLayers 3 using JSDoc.

[259]

Compiling Custom Builds
with Closure

Welcome to the last chapter of Mastering OpenLayers 3. In your journey to master this
library, you became familiar with quite a lot of concepts of OpenLayers 3. Until now,
we used a full build of the library for our various purposes. This is good for learning,
but it's not very effective in cases where we'd like to deploy an application. In most
of cases, you will only need a small subset of the library's capabilities. To have a
firm grip on the required subset, you will learn how to compile a custom build with
Closure Compiler. You will also learn a few tricks to minimize your application even
better and create documentation.

In this chapter, we will cover the following topics:

• Building OpenLayers 3 with only a subset of features
• Bundling an application with OpenLayers 3
• Extending OpenLayers 3
• Creating a rich API documentation automatically with JSDoc

Before getting started
As we are going to compile the library from source code, we will need the source code
of OpenLayers 3 for this chapter. You can find the source code of OpenLayers 3.11.1 in
the src folder of the code appendix. Alternatively, you can download the source of the
most recent version from the OpenLayers 3 GitHub repository at https://github.
com/openlayers/ol3/releases. For the compiling, we will use Google's Closure
Compiler, which is bundled with OpenLayers 3. On the top of this, the library offers
convenience tools that are tailored for this specific library. As these tools are JavaScript
files, we have to use a desktop JavaScript interpreter to use them. For this task, we will
install Node JS, which is based on Google Chrome's JavaScript engine (V8).

https://github.com/openlayers/ol3/releases
https://github.com/openlayers/ol3/releases

Compiling Custom Builds with Closure

[260]

Configuring Node JS
As a first task, we will need a copy of Node JS running on our system. We can
get this piece of software in different ways on different systems. This book covers
the installation process on Windows and Linux systems. After the installation,
everything will work similarly from the command line or terminal.

If you use the Mac OS X, there are great tutorials to install Node JS on the
Web. The http://coolestguidesontheplanet.com/installing-
node-js-on-osx-10-10-yosemite/ website shows you how to
install it with a precompiled binary (do not be misled by the title; it's the
one for El Capitan), while http://sourabhbajaj.com/mac-setup/
Node.js/README.html shows you how to install it using brew.

Installing Node JS on Windows
To get Node JS on Windows, we have to download the installer from its home page.
First, we navigate to https://nodejs.org/en/, where the site tries to detect our
system configuration and automatically offers a version to download. In most cases,
this version is the appropriate one.

If the site misinterprets your system, navigate to the download's site
where you can choose the right installer.

Next, we download the installer and run it. Then, the installation wizard leads us
through the installation process. We can leave every option in their default values.
After the installation is finished, we get some shortcuts for different purposes:

From the available shortcuts, we will need the command prompt (Node.js command
prompt) as we will need to start various JavaScript programs. When we start a
program, we get a default command line with the message: the command line is
configured to work with Node JS. The only thing left to do is navigate to the folder
containing the source code of OpenLayers 3. We can easily do this with the cd
command and a relative path from the current directory.

http://coolestguidesontheplanet.com/installing-node-js-on-osx-10-10-yosemite/
http://coolestguidesontheplanet.com/installing-node-js-on-osx-10-10-yosemite/
http://sourabhbajaj.com/mac-setup/Node.js/README.html
http://sourabhbajaj.com/mac-setup/Node.js/README.html
https://nodejs.org/en/

Chapter 10

[261]

If you have your source code on a different partition, you have to change
the current partition first. You can do this by simply typing in the letter
of the partition. For example, if you have your source code on partition
D and you are in partition C, just type D: in the command prompt before
changing the current directory.

Installing Node JS on Linux
In Linux, we can easily install Node JS if we have a distribution with a package
management system. The only restriction is that we must have superuser privileges
to install new packages. Therefore, we have to change to a superuser with su or
prepend sudo to the following commands. For Debian-based distributions (such as
Ubuntu), we have to run the following command in the terminal:

apt-get install node

In systems based on Fedora and Red Hat, we can use the yum package manager to
achieve the same results:

yum install node

Most of the common distributions have their own package management
systems. For example, Arch Linux has pacman. If your distribution does
not have one, you have to build Node JS from its source code. You can
download the source code from the Node JS download page.

If we used su to switch to the superuser, we switch back with the exit or logout
commands, and navigate to the source code's directory using cd.

Resolving dependencies
The installation process of Node JS gave us two programs for our use: node and npm.
npm stands for Node Package Manager, and we will use it to install every dependency
of OpenLayers 3. npm can be used to install packages globally or only for a single
project. We will use the latter option as it is a cleaner solution for our case. From now
on, every step will be almost identical on different operating systems.

When we say almost identical, we mean that on Windows, you have to
replace every forward slash (/) representing a folder delimiter with a
backward slash (\). You only have to do this for command-line commands.
In configuration files, you have to use a forward slash as usual.

Compiling Custom Builds with Closure

[262]

To resolve the dependencies of OpenLayers 3, we only have to type the following
command in the terminal from the directory of the source code (src/ol3-3.11.1):

npm install

If we wait for the command to finish, we will notice that there are two new folders
in the directory, called node_modules and build. The node_modules folder contains
every node package used by OpenLayers 3 on compilation. The other folder contains
some external JavaScript libraries, which are bundled with OpenLayers 3.

Compiling OpenLayers 3
Now that we have resolved every dependency, let's build some versions of the
library. First, we will build the minified and debug versions of the library just to see
whether everything works fine. In the tasks folder, we can see a bunch of JavaScript
files used in various stages of development. There are some test programs, serve
commands, and the command that we will use to compile the library: build.js. This
program requires two parameters to run. The first is a configuration file, while the
second is the name of the result.

As the Closure Compiler is a quite complex library built in Java and Python,
OpenLayers 3's developers created some utilities to make our lives easier. With
build.js, we do not have to directly parameterize the Closure Compiler, we
just have to write a configuration file in the JSON format. The program reads our
configuration file and writes every exportable symbol (constructor, method, and so
on) from the src folder to a file named info.json. This file can be located in the
build folder. Then it goes on to parameterize the Closure Compiler based on the
parameters of our configuration file's compile section and builds the library.

There is another utility called closure-utils. This program contains all the
programs from the tasks folder in one place. It uses a slightly different
syntax from build.js. You can watch a great tutorial to use this
program on the OpenLayers 3 official site at http://openlayers.org/
en/master/doc/tutorials/closure.html. It covers everything
from creating a new Node project with OpenLayers 3 as a dependency to
creating debug builds.

http://openlayers.org/en/master/doc/tutorials/closure.html
http://openlayers.org/en/master/doc/tutorials/closure.html

Chapter 10

[263]

Building default versions
Next, as we now know how to use the build.js program, we can build the default
versions of OpenLayers 3. For this, we only need the default configuration files,
which are located in the config folder. From the source directory, we can build the
two versions with the following commands:

node tasks/build.js config/ol.json ol.js

node tasks/build.js config/ol-debug.json ol-debug.js

In the examples for this chapter, you will find an example named ch10_test. It is
a simple copy of the simple map example from the first chapter. If you copy your
freshly compiled library to this example and link it to the HTML file, you will see the
map show up. You can test your debug version in a similar manner.

If you use Windows, you will most likely run into an error if you have
one or more whitespaces in your full path. You have to remove them
prior to compiling the code.

Understanding a configuration file
Before we create a smaller build, let's take a look at the configuration file first. Open
the ol.json file from the config folder of the source code in a text editor. We can
see that there are three parameters in the file. The first one is called exports. It
defines an array of symbols which we would like to export. Every other symbol
will be obfuscated in the compiled library. The second one is umd. UMD stands for
Universal Module Definition, and it should be used when we would like to use our
library in a modular way, for example, with Browserify or ReactJS. The third symbol
is compile, which contains the Closure Compiler-related parameters.

Compiling Custom Builds with Closure

[264]

There is one extra parameter that we should discuss. It is called src, and it contains
an array of paths. The JavaScript files under these paths are used in the compilation
process. For now, its default value is sufficient; however, if we have some files
outside the src folder, it has to be defined.

Note that symbols are only exported from JavaScript files located in the
src folder.

Building OpenLayers 3 with a subset of
features
In the configuration file, we saw that the exports parameter had a single member:
*. This means that every exportable symbol should be exported and there is no filter
applied. To compile only the necessary features for a project, we can define an array
of features in this parameter. In this example, we will compile a small library with
only the features needed for our geocaching application from Chapter 8, OpenLayers 3
for Mobile. First, there is a configuration file called ch10_geocaching_conf.json. If
we open this configuration file, we can see that every feature of it is used in a mobile
application in the order of occurrence. The other thing that we recognize instantly is
that we have to export methods besides constructors. Methods are annotated after a
corresponding constructor that is delimited by #:

{
 "exports": [
 "ol.Map",
 "ol.layer.Tile",
 "ol.source.OSM",
 "ol.control.Zoom",
 "ol.View",
 "ol.Geolocation",
 "ol.Map#getView",
 "ol.View#getProjection",
 "ol.layer.Vector",
 "ol.source.Vector",
 "ol.Map#addLayer",
 "ol.Geolocation#once",
 "ol.Geolocation#getAltitude",
 "ol.Geolocation#getPosition",
 […]

Chapter 10

[265]

Now that we have a nice list of features to export, we can compile a smaller library.
We copy this configuration file to the config folder of the source code and build a
new version of it with the following command:

node tasks/build.js config/ch10_geocaching_conf.json ol-geocaching.js

Note that copying the configuration file into the config folder is not
mandatory; we just do this for added consistency.

If we examine the resulting library, we will see that it's only 205.6 kilobytes. This is
a great result compared to the original library, which is 497.3 kilobytes. Finally, we
test our custom version. There is an example, called ch10_geocaching, which we
use for testing purposes. Let's link this version in the example's HTML file and check
whether it works:

We could get such a small library with a defined set of exports because
Closure Compiler checks for the exported symbols in the advanced mode.
It exports the unchanged symbols and packs every other related code
next to them in an obfuscated form. If a piece of code is entirely unrelated
to the exported symbols, Closure removes it from the resulting library.

Compiling Custom Builds with Closure

[266]

Bundling an application with
OpenLayers 3
Now, as we know how to build custom libraries, let's take a step forward and learn
how to compile our application with OpenLayers 3. This process has two steps. First,
we have to edit our application as it has to be compatible with the Closure Compiler.
Next, we have to create a custom configuration file, which can create a library with
just the features that our application needs.

Editing the application
To make our application Closure-compatible, we have to make two modifications
to it. You can either make these modifications in the JavaScript file of the previous
example, called ch10_geocaching.js, or open the provided modified file to check
the result. The modified version is called ch10_geocaching_reworked.js. First, we
have to provide a namespace for our application. In this example, that namespace
will be geocaching. Next, we provide that namespace to the Closure Compiler using
the Closure Library:

goog.provide('geocaching');

Next, we build the dependencies of the application using the Closure Library. Similar
to the previous syntax, we will also require some symbols. These dependencies will
be parsed and resolved by the Closure Compiler:

goog.require('ol.Map');
goog.require('ol.layer.Tile');
goog.require('ol.source.OSM');
goog.require('ol.control.Zoom');
goog.require('ol.View');
goog.require('ol.Geolocation');
goog.require('ol.layer.Vector');
goog.require('ol.source.Vector');
goog.require('ol.Feature');
goog.require('ol.geom.Point');
goog.require('ol.has');
goog.require('ol.control.FullScreen');
goog.require('ol.style.Style');
goog.require('ol.style.Circle');
goog.require('ol.style.Fill');
goog.require('ol.style.Stroke');
goog.require('ol.geom.Circle');
goog.require('ol.geom.LineString');
goog.require('ol.interaction.Select');

Chapter 10

[267]

goog.require('ol.control.Control');
goog.require('ol.style.RegularShape');
goog.require('ol.interaction.Modify');
goog.require('ol.Collection');
goog.require('ol.Overlay');

As we can see, the number of dependencies are lower than the number of exports
from the previous example. As we wouldn't like to export anything now, we only
have to provide the constructors that our application uses. The methods of these
constructors get included automatically if they are used. Finally, let's add the main
parts of our application to the provided geocaching namespace:

 function init() {
 document.removeEventListener('DOMContentLoaded', init);
 geocaching.map = new ol.Map({
 […]
 });
 var map = geocaching.map;
 geocaching.geoloc = new ol.Geolocation({
 […]
 });
 var geoloc = geocaching.geoloc;
 geocaching.geoCaching = new ol.layer.Vector({
 source: new ol.source.Vector()
 });
 var geoCaching = geocaching.geoCaching;

Namespacing your application is important. No matter how complex
it will be in the end, if you create a nice structure for it, you will still be
able to read it easily. Namespaces can help you develop a good structure
for your application.

Creating a configuration file
The only thing left is building a new configuration file for our application. First,
create a folder, called app, in the source code's directory. Next, move the modified
JavaScript file (ch10_geocaching_reworked.js) to this folder. If you look at the
examples, you will see a file named ch10_geocaching_reworked_conf.json. This
will be our new configuration file, which we will discuss in the following lines. You
can either create your own or use this file. The first thing we can see in the modified
configuration file is the new src parameter. If we override the default parameter
with our own array, we have to provide the two default values. Additionally, we
provide the path to our application:

Compiling Custom Builds with Closure

[268]

If you use closure-utils, the src parameter becomes lib and mandatory.
The rest of the syntax is the same. Here, ** indicates every folder, while
* indicates every file.

{
 "src": [
 "src/**/*.js",
 "build/ol.ext/**/*.js",
 "app/**/*.js"
],

The next change we can notice is that the exports parameter is an empty array.
That's right: we do not export any symbol, just make a big compiled JavaScript
application:

 "exports": [],

We did not discuss the compile parameter before, but as we have to change the
parameters of the Closure Compiler, we should do it now. First of all, there is a new
parameter called closure_entry_point. It defines the namespace and whether the
Closure Compiler should resolve the dependencies recursively. The goog.provide
function must be called on it:

 "compile": {
 "closure_entry_point": "geocaching",

There are some slight changes in the defines property. This property contains
every variable that can be changed at the time of compilation. These are some of the
configuration options built in the library. As we compile a mobile application with a
Canvas renderer, we do not need WebGL or DOM support:

 "define": [
 "goog.array.ASSUME_NATIVE_FUNCTIONS=true",
 "goog.dom.ASSUME_STANDARDS_MODE=true",
 "goog.json.USE_NATIVE_JSON=true",
 "goog.DEBUG=false",
 "ol.ENABLE_DOM=false",
 "ol.ENABLE_WEBGL=false"
],

You can find every OpenLayers 3-related compile time parameter with
its default values in the source code (src/ol/ol.js). They are marked
with @define in their headers.

Chapter 10

[269]

Next, you will notice quite an extensive list of values under the jscomp_warning,
jscomp_error and jscomp_off parameters. These important parameters instruct the
compiler on whether it should throw an error for various check types. As we did not
make any effort to structure our application in the Closure syntax, we define most
of the checks as warnings. Closure will only throw an error if we do not require or
provide appropriate classes. Furthermore, we will disable the error checks that are
disabled in the default configuration file:

 "jscomp_warning": [
 "accessControls",
 "ambiguousFunctionDecl",
 "checkEventfulObjectDisposal",
 "checkRegExp",
 "checkTypes",
 "checkVars",
 "const",
 […]
],
 "jscomp_error": [
 "missingRequire",
 "missingProvide"
],
 "jscomp_off": [
 "useOfGoogBase",
 "unnecessaryCasts",
 "lintChecks"
],
 […]
 }
}

You can find every valid Closure Compiler parameter on the closure-
utils GitHub page at https://github.com/openlayers/closure-
util/blob/master/compiler-options.txt.

This way, the Closure Compiler will not run if we've missed out a dependency but
specifies it in the error statement. It will also tell us about every other error in our
code from the aspect of Closure but compiles the code anyway. As our application
worked before the compilation, it will work after it as well. Or won't it? Let's copy
the configuration file into the source code's config directory, and make a custom
build with the following command:

node tasks/build.js config/ch10_geocaching_reworked_conf.json
ol_geocaching_rw.js

https://github.com/openlayers/closure-util/blob/master/compiler-options.txt
https://github.com/openlayers/closure-util/blob/master/compiler-options.txt

Compiling Custom Builds with Closure

[270]

If everything is in place, the compiler creates a build with some warnings. Those
warnings are the result of the poor structure of our application. However, our new
library is only 178 kilobytes, which is great:

Finally, let's test the application in the example, named ch10_geocaching, by linking
the new library in the HTML file. Don't forget to replace the OpenLayers 3 library
with our new one, and remove the link to ch10_geocaching.js. As you can see,
everything works well, except for the functionalities related to the loot attribute.

Fixing the application
So, what could go wrong in our application? Let's put ourselves in a compiler's
shoes. It shrinks the library aggressively by replacing every variable in it with a few
letter representations. When it comes to the part where we've declared the loot
property, it sees the following:

 geoCaching.getSource().addFeature(new ol.Feature({
 […]
 loot: 'Treasures of the Seven Seas'
 }));

It replaces loot with a shorter representation and goes on. When it comes to the part
of calling this attribute, it sees the following:

Chapter 10

[271]

 saveButton.addEventListener('click', function
(evt) {
 feature.set('loot', lootElem.value);
 map.removeOverlay(overlay);
 });

It's also loot, but as a string. The compiler cannot find a shorthand for 'loot';
therefore, it shortens it as another variable. Thus, when we run our application, it
declares loot as variable A and calls 'loot' variable B. To fix our application, we
simply have to declare loot as a string:

 geoCaching.getSource().addFeature(new ol.Feature({
 […]
 'loot': 'Treasures of the Seven Seas'
 }));

If you recompile the library with the fixed application, you will see that everything
works fine. The global scope is filled with some obfuscated functions, but it is also
the result of the poor structure of our application.

This was quite an easy problem to fix. However, it could be worse. If you
write a complex application and already know in the beginning that you
will have to compile it with Closure, you might want to become familiar
with the Closure Library and write your application with it.

As the last check, let's take a look at how error handling works in Closure. Modify
the application and remove one or more of the dependencies. If you run the
compiler, you will see that it does not fill the terminal with warnings, it just throws
the errors. This way, you can resolve the missing dependencies quite easily:

Compiling Custom Builds with Closure

[272]

Extending OpenLayers 3
In the previous examples, we worked hard to reduce the size of the library by cutting
out some irrelevant parts. Now, let's do the contrary and extend the library with
additional functionality. Remember the example where we measured distance on an
ellipsoid? We used the debug library of an older OpenLayers 3 version to achieve
this. Now, we will build the ol.Ellipsoid class in our next custom build. You can
find a JavaScript file, named ellipsoid.js, in the examples folder and an example
named ch10_test_ellispsoid. The latter is the exact copy of ch05_measure with
ch05_measure_vincenty.js. First, open up ellipsoid.js. This is how a well-
structured code looks from the aspect of the Closure Compiler. There are headers
everywhere with type definitions and additional information. These headers are
written in the syntax of JSDoc, but JSDoc and Closure Compiler go hand in hand.

The first part of the code resolves the dependencies of this constructor and provides
a name for it:

goog.provide('ol.Ellipsoid');

goog.require('goog.math');
goog.require('ol.Coordinate');

Then, the constructor is defined with every parameter and method. The important
part is the header. It is clearly defined. Closure has to deal with a constructor that has
two input parameters:

/**
 * @constructor
 * @param {number} a Major radius.
 * @param {number} flattening Flattening.
 */

However, as there is nothing else specified, this constructor won't get exported
unless we modify this header. The standard Closure way to do this is by declaring
the symbol as exportable and setting the generate_exports compiler parameter
to true. However, this won't work with the library. As the exportable symbols are
preprocessed with the custom build tools, we have to use an OpenLayers 3-only tag:
api. Let's extend the header with the new tag:

/**
 * @constructor
 * @param {number} a Major radius.
 * @param {number} flattening Flattening.
 * @api
 */

Chapter 10

[273]

We are not yet done with the code. As we would like to expose the ellipsoid object's
vincentyDistance method, we have to make it exportable, too:

/**
 * Returns the distance from c1 to c2 using Vincenty.
 *
 * @param {ol.Coordinate} c1 Coordinate 1.
 * @param {ol.Coordinate} c2 Coordinate 1.
 * @param {number=} opt_minDeltaLambda Minimum delta lambda for
convergence.
 * @param {number=} opt_maxIterations Maximum iterations.
 * @return {number} Vincenty distance.
 * @api
 */

Next, we create a plugins folder inside the source code directory's src folder. We
copy the modified ellipsoid.js to this folder. We're almost there. The only thing
left to do is remove the info.json file from the build folder. This file is generated
by the build tool if it does not exist. If it is there, the tool simply parses the exportable
symbols from it and builds the library accordingly. However, as we try to extend
the library, the symbols in that file will not correspond with the truly exportable
symbols. As a result, if we extend a library and compile it without removing the file,
the new symbols won't be exported. If we remove something from the source code
and compile it without removing the file, the Closure Compiler will throw an error:

If you accidentally remove a dependency from the build folder or
anywhere else, don't panic. Just rerun npm install, and npm will take
care of fixing those files for you.

Compiling Custom Builds with Closure

[274]

Now that everything is in place, we can run the compiler with the default
configuration file. We run the compiler with the following command:

node tasks/build.js config/ol.json ol_ellipsoid.js

If you copy the resulting library in the examples' folder and link it in ch10_test_
ellipsoid.html in the place of the original OpenLayers 3 library, you will see that
ol.Ellipsoid is now exposed:

Creating rich documentation with JSDoc
In our last example, we will automatically create documentation for OpenLayers
3. As we saw in ellipsoid.js, the headers resemble to the structure of the API
documentation. The explanation is simple: Closure Compiler and JSDoc use the
same headers to compile the library and create documentation for them. When we
extended the constructor and the vincentyDsitance method with the @api tag, we
not only make them exportable but also define that they should appear in the API
documentation.

Chapter 10

[275]

JSDoc is defined as an OpenLayers 3 dependency; therefore, it can be found in the
node_modules folder. We will use it to generate documentation for our customized
version. It also needs a configuration file, which is different from the one used for
compiling. The default JSDoc configuration file can also be found in the config
folder (config/jsdoc/api/conf.json). First, let's create a documentation with the
default configuration file. For this, type the following command into the terminal:

node node_modules/jsdoc-fork/jsdoc.js -c config/jsdoc/api/conf.json

If you wait for the program to be completed, you will notice that there is a new folder
in the directory, called out. This is the default output directory for JSDoc. If you open
index.html inside this folder, you will see the generated API documentation with
the ol.Ellispoid constructor and its vincentyDistance method:

Customizing the documentation
We can tell from the first API documentation export that JSDoc uses the same
headers, just like Closure. However, it uses a different syntax in the configuration
file and command line. Now, we customize the documentation template a little
bit, starting with a few simple steps. First, let's add a little description to the
ol.Ellipsoid constructor in ellipsoid.js:

/**
 * @classdesc

Compiling Custom Builds with Closure

[276]

 * Class to create an ellipsoid to measure accurate geodesic
distances,
 * where accuracy is more important, than performance.
 *
 * To create the WGS84 ellipsoid:
 *
 * ```js
 * var ellipsoid = new ol.Ellipsoid(6378137, 1 / 298.257223563);
 * ```
 *
 * @constructor
 * @param {number} a Major radius.
 * @param {number} flattening Flattening.
 * @api
 */

With the @classdesc tag, we can write an extensive class description for a symbol.
The content marked by this tag gets a different class name in the generated
documentation, and, thus, it can be distinguished from other descriptions with the
help of CSS. With a special syntax, we can also embed a code snippet, which is not
only displayed as a code in the documentation but also syntax that's highlighted
based on the language we define.

Next, we modify the default template of OpenLayers 3. The library uses a modified
version of the Jaguar template (https://github.com/davidshimjs/jaguarjs/
tree/master/docs/templates/jaguar). First, we navigate to the template in the
source code (config/jsdoc/api/template). In this folder, there are two folders of
interest. First, let's navigate to the tmpl folder, which contains the skeleton of various
parts of the API documentation. The main template is called layout.tmpl, which is
our main target. When you open that template, you will see that there are two main
parts in the body of the skeleton. The first one describes the navigation bar, while
the second one is for the content. The horizontal navigation bar is a custom
OpenLayers 3 feature; therefore, we remove it. To also add something to the
documentation, we add an attribute footer with a timestamp:

<body>
 <div id="wrap" class="clearfix">
 <?js= this.partial('navigation.tmpl', this) ?>
 <div class="main">
 <h1 class="page-title" data-filename="<?js= filename
?>"><?js= title ?></h1>
 <?js= content ?>
 <footer>

https://github.com/davidshimjs/jaguarjs/tree/master/docs/templates/jaguar
https://github.com/davidshimjs/jaguarjs/tree/master/docs/templates/jaguar

Chapter 10

[277]

 Documentation generated by <a href="https://github.
com/jsdoc3/jsdoc">JSDoc <?js=
env.version.number ?> on <?js= (new Date()) ?>
 </footer>
 </div>
 </div>
 <script>prettyPrint();</script>
 <script src="scripts/linenumber.js"></script>
 <script src="scripts/main.js"></script>
</body>

As these documents are just templates, you can call JavaScript variables
and methods in them. Just use the right syntax (<?js= for an opening
tag and ?> for a closing tag).

Now, we've gotten rid of the horizontal navigation bar, but we also lost the name
of the application. Without a horizontal navigation bar, the best fixed place to put
such an annotation is in the vertical navigation bar. To do this, we have to modify
navigation.tmpl a little bit:

<div class="navigation">
 <p class="applicationName"><?js=
env.conf.templates.applicationName ?></p>
 <div class="search">
 <input id="search" type="text" class="form-control input-sm"
placeholder="Search Documentation">
 </div>
 […]

With this extension, our application's name, which is read out from the configuration
file and stored in the env.conf.templates.applicationName variable at the time of
being generated, will always appear on the top of the vertical navigation bar.

If we'd like to generate our modified API documentation now, we would notice that
everything is working nice, aside from the white space in the place of the horizontal
navigation bar. As both of the navigation bars are in a fixed position, the body of the
document has a padding of 50px. This way, the horizontal navigation bar fits nicely
at the top of the documentation. To fix this, we have to modify one of the template's
CSS files. This can be found in the other folder of interest under the static/styles/
jaguar.css path. In this CSS file, we only have to remove the padding from the body
element:

body {
 padding-top: 50px;
}

Compiling Custom Builds with Closure

[278]

Finally, before generating the new API documentation, let's change the configuration
file a little bit. Most of the options are good to go; we only need to change the name
of the application and the outputSourceFiles parameter. If this parameter is set
to true, the source files get bundled along with the documentation and will be
accessible from the corresponding symbol. The configuration file that we modify is
located in the parent of the template folder (config/jsdoc/api/conf.json from
the source code's root directory):

{
 […]
 "templates": {
 […]
 "default": {
 "outputSourceFiles": true
 },
 "applicationName": "OL3 with Ellipsoid"
 },

Now, at last, we run JSDoc again. This time, we specify another parameter: the
output directory. We can do this with the -d argument. Don't forget to run this
command from the source code's root directory:

node node_modules/jsdoc-fork/jsdoc.js -c config/jsdoc/api/conf.json -d
apidoc

If we wait for the program to finish and look at the newly created apidoc folder, we
can take a look at our new documentation:

Chapter 10

[279]

The new API documentation is customized with a class description added to
the ol.Ellipsoid constructor, and there is a source code page associated with
every class. This is very nice; however, if we check the size of this new, extended
documentation, it's the double of the one without the source code included. It seems
like linking everything to the appropriate GitHub source file is a good practice.

Curious about the long, ugly, and partially broken links? The
OpenLayers 3 API documentation tries to link every source to the
appropriate GitHub source file. Take a look at config/jsdoc/
api/template/static/scripts/main.js to discover and,
optionally, modify/turn off this feature.

Summary
Congratulations! You are at the end of a long journey of mastering OpenLayers 3.
In this last chapter, we extended our knowledge even further and learned how to
customize, shrink, and extend the source code of the library as well as compile our
own version. We also learned how to compile our own application with the library
and create a standalone documentation for our customized product.

There is only one thing left for you to do. As every book has a physical limit, we
could not cover every little part of the library. As now you have a solid basis in
application development with OpenLayers 3, go on, and create your own great
applications. Practice, find the best solution for your case, and always keep up
with the changes, and the new, cutting edge features. Good luck!

[281]

Index
Symbols
3D rendering, with Cesium

about 248
Cesium scene, extending 255, 256
control, creating 250-252
map, preparing 248-250
terrain, observing 253, 254

A
animations

control, building 163, 164
creating 164-169
custom animations, creating 162

API documentation
URL 9
using 9

application
building, with OpenLayers 3 266
configuration file, creating 267-270
editing 266, 267
fixing 270, 271

arbitrary formats 96
attributes, accessing

about 76
code, writing 77, 78

attributes, setting
about 80
code, writing 81-84
form, styling 80, 81

attributes, validating
about 84
code, writing 86-88
headers, building 85
styles, adjusting 85

C
canvas-based web mapping library 13, 14
categorized maps

creating 94-96
Cesium 248
choropleth maps

creating 91-94
clipping mask

creating 197-201
Closure Compiler parameter

URL 269
code

debugging 11, 12
controls

adding 107
creating 105, 106
interactions, mapping 104
removing 107
selection control, adding 108

convolution matrix
control, finalizing 191-194
creating 186
image, converting to 8-bit 187, 188
image, normalizing 190
Sobel filter, implementing 189
working 187

Cross Origin Resource Sharing (CORS) 2

D
default appearance

attribution, modifying 26-28
attribution control, customizing 18
classes, identifying 15
controls, styling 15-17

[282]

coordinates control, truncating 25
customizing 14
customizing, JavaScript used 24
custom zoom control, creating

with CSS 19-21
overview map, modifying 24
scale bar, modifying 24

device-dependent controls
adding 211
adding, for desktop computers 214-216
adding, for touch devices 213

documentation
customizing 275-279

Drag and Drop API
used, for modifying layer order 68-71

drawing tools
method, writing 116-121
set, building 116

E
extents

toolbar, extending 152, 153
URL 161
working with 151
zoom control, creating 151, 152

F
feature selection controls

selection tools, creating 110-112
set, building 109
styling 109

File API
used, for adding vector layers 56

G
geometry

modifying 98, 99

I
image

converting, to 8-bit 187, 188
normalizing 190

interactions
features, dragging 127, 128
features, removing 125-127
interactions, creating 124
mapping, to controls 104
method, extending 128
ol.interaction.Pointer 125

J
Jaguar template

URL 276
JSDoc

rich documentation, creating with 274, 275
JSTS

about 244
reference 245

L
layer attributes

active layers, styling 64
method, extending 65-67
modifying 64

layers
adding, dynamically 43
blending 176, 177
clipping 178, 179
clipping, with WebGL 194, 195
constructor, extending 45-48
interface, creating 43, 44
order changing, Drag and Drop API

used 68-71
WFS, considerations 55, 56
WFS layers, adding 54, 55
WMS layers, adding 53
WMS metadata, fetching 49-52

layer tree
about 35
basic considerations 37
building 37
constructor, creating 39-41
extending 114, 115
proxy, using 36
resources 36, 37
styling 38

[283]

layout
appeal, creating 5
building 4
code, writing 6, 8

lines
drawing, with WebGL 174, 175

Linux
Node JS, installing 261

M
map

categorized maps, creating 94-96
choropleth maps, creating 91-93
controlling 141, 142
exporting 179-182
projection, changing 157-161

MapServer
URL 37

MDN
URL 177

measurements
geodesic measurements 136-138
lengths, calculating 138

measuring control
building 130
interaction, creating 130-136

message bar
clearing 72, 73

mobile application
making interactive 220-222

mobile version
vectorizing 216-220

Mozilla Developer Network
URL 20

N
navigation history

creating 146-150
Node JS

configuring 260
dependencies, resolving 261, 262
installing, on Linux 261
installing, on Windows 260, 261
URL 260

Node Package Manager (npm) 261

O
ol-debug.js 101
OpenLayers 3

about 1
application, building with 266
building, with subset of features 264, 265
compiling 262
configuration file 263
default versions, building 263
extending 272-274
layout, building 4
structure 3, 4
URL 2
working environment, creating 2

OpenLayers 3, for mobile
about 203
basic considerations 204
device dependent controls, adding 211
geocaches, generating 209-211
making interactive 220-222
mobile version, vectorizing 216-220
responsive styling, with CSS 204

OpenLayers 3 LayerSwitcher
URL 230

overlays 76

P
pixels

operating with 184, 185
polygons

drawing, with WebGL 174, 175
proxy

using 36

Q
qgis2web plugin

installing 227
QGIS project

exporting 226
inspecting 228
map, exporting 229, 230
results, salvaging 230-232

[284]

R
raster calculator

creating 182
Raster 101 183

renderers
using 172

responsive styling, with CSS
about 204
map, constructing 207-209
style sheet, writing 205, 206

S
Shapefile JS

URL 233
shapefiles

function, replacing 234, 235
HTML file, editing 232, 233
importing 232

Sobel filter
implementing 189

spatial analysis, with JSTS
about 244
operations, implementing 245-247

spatial analysis, with Turf
about 236
buffer operation, implementing 238-240
example, preparing 236
merge operation, implementing 240, 241
self-intersect operation,

implementing 242-244

T
thematic layers

categorized maps, creating 94-96
choropleth maps, creating 91-94
creating 89
layer tree, extending 89-91

third-party applications
integrating 225

toolbar
about 102
building 102-104
features, snapping to 121
methods, extending 122, 123

Turf
about 236
URL 236

type definitions 10
typed arrays

URL 192

V
vector data

arbitrary formats, saving in 96
saving 96

vector layers
adding 112
adding, with File API 56
adding, with library 59, 60
constructor, extending 61-64
HTML and CSS, creating 113
interface, creating 56, 57
method, building 57-59
removing, dynamically 61
styling 22, 23

view
constraining 145, 146
customizing 143, 144
rotating 154-156

W
Web Feature Service (WFS)

considerations 55, 56
URL 37
WFS layers, adding 54, 55

WebGIS client layout
code, writing 32, 33
creating 28
HTML, building 28
styling 29-31

WebGL
clipping mask, creating 197-201
layer, clipping with 194
programs, writing 195-197
URL 195
used, for drawing lines 174, 175
used, for drawing polygons 174, 175
WebGL map, creating 172-174

WebGL renderer 171

[285]

WFS-Transaction (WFS-T) service
used, for saving 97

Windows
Node JS, installing 260, 261

WMS
URL 36
WMS layers, adding 53
WMS metadata, fetching 49-52

Z
zoom control

creating 151, 152

Thank you for buying
Mastering OpenLayers 3

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenLayers 3
Beginner's Guide
ISBN: 978-1-78216-236-0 Paperback: 512 pages

Get started with OpenLayers 3 and enhance your web
pages by creating and displaying dynamic maps

1. Create and display maps online with the
latest HTML5 features available, using the
OpenLayers 3 library.

2. Learn how to interact with the map and learn
best practices to improve the loading time for a
map.

3. A practical beginner's guide, which also serves
as a quick reference with useful screenshots
and detailed code explanations.

Instant OpenLayers Starter
ISBN: 978-1-78216-510-1 Paperback: 58 pages

Web Mapping made simple and fast!

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Visualize your geographical data.

3. Integrate with third party map services to
create mash-ups.

4. Stylize and interact with your maps.

Please check www.PacktPub.com for information on our titles

OpenLayers Cookbook
ISBN: 978-1-84951-784-3 Paperback: 300 pages

60 recipes to create GIS web applications with the open
source JavaScript library

1. Understand the main concepts about maps,
layers, controls, protocols, events etc.

2. Learn about the important tile providers and
WMS servers.

3. Packed with code examples and screenshots
for practical, easy learning.

OpenLayers 2.10
Beginner's Guide
ISBN: 978-1-84951-412-5 Paperback: 372 pages

Create, optimize, and deploy stunning cross-browser
web maps with the OpenLayers JavaScript web
mapping library

1. Learn how to use OpenLayers through
explanation and example.

2. Create dynamic web map mashups using
Google Maps and other third-party APIs.

3. Customize your map's functionality and
appearance.

4. Deploy your maps and improve page loading
times.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating Simple Maps with OpenLayers 3
	Before getting started
	Creating a working environment

	Structure of OpenLayers 3
	Building the layout
	Creating the appeal
	Writing the code

	Using the API documentation
	Understanding type definitions

	Debugging the code
	Summary

	Chapter 2: Applying Custom Styles
	Before getting started
	Basic considerations

	Customizing the default appearance
	Identifying the classes
	Styling the controls
	Customizing the attribution control
	Creating a custom zoom control with CSS

	Styling vector layers
	Customizing the appearance with JavaScript
	Changing the overview map and the scale bar
	Truncating the coordinate control
	Changing the attribution

	Creating a WebGIS client layout
	Building the HTML
	Styling the layout
	Writing the code

	Summary

	Chapter 3: Working with Layers
	Before getting started
	Using a proxy
	Resources to use
	Basic considerations

	Building a layer tree
	Styling the layer tree
	Creating a layer tree constructor

	Adding layers dynamically
	Creating the interface
	Extending the constructor
	Fetching the WMS metadata
	Adding WMS layers
	Adding WFS layers
	WFS considerations

	Adding vector layers with the File API
	Creating the interface
	Building the method

	Adding vector layers with a library
	Removing layers dynamically
	Extending a constructor

	Changing layer attributes
	Styling active layers
	Extending the method

	Changing the layer order with the Drag and Drop API
	Clearing the message bar
	Summary

	Chapter 4: Using Vector Data
	Before getting started
	Accessing attributes
	Writing the code

	Setting attributes
	Styling the form
	Writing the code

	Validating attributes
	Adjusting the styles
	Building headers
	Writing the code

	Creating thematic layers
	Extending the layer tree
	Creating choropleth maps
	Creating categorized maps

	Saving vector data
	Saving in arbitrary formats

	Saving with WFS-T
	Modifying the geometry
	Summary

	Chapter 5: Creating Responsive Applications with Interactions and Controls
	Before getting started
	Basic considerations

	Building the toolbar
	Mapping interactions to controls
	Creating the control
	Adding and removing the control
	Adding a selection control

	Building a set of feature selection controls
	Styling the controls
	Creating the selection tools

	Adding new vector layers
	Creating the HTML and the CSS
	Extending the layer tree

	Building a set of drawing tools
	Writing the method

	Modifying and snapping to features
	Extending the method

	Creating new interactions
	Understanding ol.interaction.Pointer
	Removing features
	Dragging features
	Extending the method

	Building a measuring control
	Creating the interaction
	Doing geodesic measurements
	Calculating lengths even more precisely

	Summary

	Chapter 6: Controlling the Map – View and Projection
	Before getting started
	Basic considerations

	Customizing a view
	Constraining a view
	Creating a navigation history
	Working with extents
	Creating a zoom control
	Extending the toolbar

	Rotating a view
	Changing the map's projection
	Creating custom animations
	Building the control
	Creating animations

	Summary

	Chapter 7: Mastering Renderers
	Before getting started
	Using different renderers
	Creating a WebGL map
	Drawing lines and polygons with WebGL
	Blending layers
	Clipping layers
	Exporting a map
	Creating a raster calculator
	Raster 101
	Operating with pixels

	Creating a convolution matrix
	How convolution works
	Converting an image to 8-bit
	Implementing the Sobel filter
	Normalizing an image
	Finalizing a control

	Clipping a layer with WebGL
	Writing programs
	Creating a clipping mask

	Summary

	Chapter 8: OpenLayers 3 for Mobile
	Before getting started
	Basic considerations

	Responsive styling with CSS
	Writing the style sheet
	Constructing the map

	Generating geocaches
	Adding device-dependent controls
	Adding controls for touch devices
	Adding controls for desktop computers

	Vectorizing the mobile version
	Making the mobile application interactive
	Summary

	Chapter 9: Tools of the Trade: Integrating Third-Party Applications
	Before getting started
	Exporting a QGIS project
	Installing the qgis2web plugin
	Inspecting the project
	Exporting a map
	Salvaging the results

	Importing shapefiles
	Editing the HTML file
	Replacing a function

	Spatial analysis with Turf
	Preparing an example
	Implementing a buffer operation
	Implementing a merge operation
	Implementing the self-intersect operation

	Spatial analysis with JSTS
	Implementing operations

	3D rendering with Cesium
	Preparing a map
	Creating a control
	Observing a terrain
	Extending the Cesium scene

	Summary

	Chapter 10: Compiling Custom Builds with Closure
	Before getting started
	Configuring Node JS
	Installing Node JS on Windows
	Installing Node JS on Linux
	Resolving dependencies

	Compiling OpenLayers 3
	Building default versions
	Understanding a configuration file
	Building OpenLayers 3 with a subset of features

	Bundling an application with
OpenLayers 3
	Editing the application
	Creating a configuration file
	Fixing the application

	Extending OpenLayers 3
	Creating rich documentation with JSDoc
	Customizing the documentation

	Summary

	Index

